blaze lisp
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

979 lines
25 KiB

/*
* Copyright (C) 2023 Riyi
*
* SPDX-License-Identifier: MIT
*/
#include <chrono> // std::chrono::sytem_clock
#include <cstdint> // int64_t
#include <iterator> // std::advance
#include <memory> // std::static_pointer_cast
#include <string>
#include "ruc/file.h"
#include "ruc/format/format.h"
#include "ast.h"
#include "environment.h"
#include "error.h"
#include "forward.h"
#include "printer.h"
#include "types.h"
#include "util.h"
// At the top-level you cant invoke any function, but you can create variables.
// Using a struct's constructor you can work around this limitation.
// Also the line number in the file is used to make the struct names unique.
#define FUNCTION_STRUCT_NAME(unique) __functionStruct##unique
#define ADD_FUNCTION_IMPL(unique, symbol, lambda) \
struct FUNCTION_STRUCT_NAME(unique) { \
FUNCTION_STRUCT_NAME(unique) \
(const std::string& __symbol, FunctionType __lambda) \
{ \
s_functions.emplace(__symbol, __lambda); \
} \
}; \
static struct FUNCTION_STRUCT_NAME(unique) \
FUNCTION_STRUCT_NAME(unique)( \
symbol, \
[](std::list<ValuePtr> nodes) -> ValuePtr lambda);
#define ADD_FUNCTION(symbol, lambda) ADD_FUNCTION_IMPL(__LINE__, symbol, lambda);
namespace blaze {
static std::unordered_map<std::string, FunctionType> s_functions;
ADD_FUNCTION(
"+",
{
int64_t result = 0;
for (auto node : nodes) {
VALUE_CAST(number, Number, node);
result += number->number();
}
return makePtr<Number>(result);
});
ADD_FUNCTION(
"-",
{
if (nodes.size() == 0) {
return makePtr<Number>(0);
}
// Start with the first number
VALUE_CAST(number, Number, nodes.front());
int64_t result = number->number();
// Skip the first node
for (auto it = std::next(nodes.begin()); it != nodes.end(); ++it) {
VALUE_CAST(number, Number, (*it));
result -= number->number();
}
return makePtr<Number>(result);
});
ADD_FUNCTION(
"*",
{
int64_t result = 1;
for (auto node : nodes) {
VALUE_CAST(number, Number, node);
result *= number->number();
}
return makePtr<Number>(result);
});
ADD_FUNCTION(
"/",
{
CHECK_ARG_COUNT_AT_LEAST("/", nodes.size(), 1);
// Start with the first number
VALUE_CAST(number, Number, nodes.front());
double result = number->number();
// Skip the first node
for (auto it = std::next(nodes.begin()); it != nodes.end(); ++it) {
VALUE_CAST(number, Number, (*it));
result /= number->number();
}
return makePtr<Number>((int64_t)result);
});
// // -----------------------------------------
#define NUMBER_COMPARE(operator) \
{ \
bool result = true; \
\
CHECK_ARG_COUNT_AT_LEAST(#operator, nodes.size(), 2); \
\
/* Start with the first number */ \
VALUE_CAST(number_node, Number, nodes.front()); \
int64_t number = number_node->number(); \
\
/* Skip the first node */ \
for (auto it = std::next(nodes.begin()); it != nodes.end(); ++it) { \
VALUE_CAST(current_number_node, Number, (*it)); \
int64_t current_number = current_number_node->number(); \
if (!(number operator current_number)) { \
result = false; \
break; \
} \
number = current_number; \
} \
\
return makePtr<Constant>((result) ? Constant::True : Constant::False); \
}
ADD_FUNCTION("<", NUMBER_COMPARE(<));
ADD_FUNCTION("<=", NUMBER_COMPARE(<=));
ADD_FUNCTION(">", NUMBER_COMPARE(>));
ADD_FUNCTION(">=", NUMBER_COMPARE(>=));
// -----------------------------------------
ADD_FUNCTION(
"list",
{
return makePtr<List>(nodes);
});
ADD_FUNCTION(
"empty?",
{
bool result = true;
for (auto node : nodes) {
VALUE_CAST(collection, Collection, node);
if (!collection->empty()) {
result = false;
break;
}
}
return makePtr<Constant>((result) ? Constant::True : Constant::False);
});
// FIXME: (count {1}) infinite loop
ADD_FUNCTION(
"count",
{
CHECK_ARG_COUNT_IS("count", nodes.size(), 1);
auto first_argument = nodes.front();
size_t result = 0;
if (is<Constant>(first_argument.get()) && std::static_pointer_cast<Constant>(nodes.front())->state() == Constant::Nil) {
// result = 0
}
else if (is<Collection>(first_argument.get())) {
result = std::static_pointer_cast<Collection>(first_argument)->size();
}
else {
Error::the().add(format("wrong argument type: Collection, '{}'", first_argument));
return nullptr;
}
// FIXME: Add numeric_limits check for implicit cast: size_t > int64_t
return makePtr<Number>((int64_t)result);
});
// -----------------------------------------
#define PRINTER_STRING(print_readably, concatenation) \
{ \
std::string result; \
\
Printer printer; \
for (auto it = nodes.begin(); it != nodes.end(); ++it) { \
result += format("{}", printer.printNoErrorCheck(*it, print_readably)); \
\
if (!isLast(it, nodes)) { \
result += concatenation; \
} \
} \
\
return makePtr<String>(result); \
}
ADD_FUNCTION("str", PRINTER_STRING(false, ""));
ADD_FUNCTION("pr-str", PRINTER_STRING(true, " "));
#define PRINTER_PRINT(print_readably) \
{ \
Printer printer; \
for (auto it = nodes.begin(); it != nodes.end(); ++it) { \
print("{}", printer.printNoErrorCheck(*it, print_readably)); \
\
if (!isLast(it, nodes)) { \
print(" "); \
} \
} \
print("\n"); \
\
return makePtr<Constant>(); \
}
ADD_FUNCTION("prn", PRINTER_PRINT(true));
ADD_FUNCTION("println", PRINTER_PRINT(false));
// -----------------------------------------
ADD_FUNCTION(
"=",
{
CHECK_ARG_COUNT_AT_LEAST("=", nodes.size(), 2);
std::function<bool(ValuePtr, ValuePtr)> equal =
[&equal](ValuePtr lhs, ValuePtr rhs) -> bool {
if ((is<List>(lhs.get()) || is<Vector>(lhs.get()))
&& (is<List>(rhs.get()) || is<Vector>(rhs.get()))) {
const auto& lhs_nodes = std::static_pointer_cast<Collection>(lhs)->nodes();
const auto& rhs_nodes = std::static_pointer_cast<Collection>(rhs)->nodes();
if (lhs_nodes.size() != rhs_nodes.size()) {
return false;
}
auto lhs_it = lhs_nodes.cbegin();
auto rhs_it = rhs_nodes.cbegin();
for (; lhs_it != lhs_nodes.end(); ++lhs_it, ++rhs_it) {
if (!equal(*lhs_it, *rhs_it)) {
return false;
}
}
return true;
}
if (is<HashMap>(lhs.get()) && is<HashMap>(rhs.get())) {
const auto& lhs_nodes = std::static_pointer_cast<HashMap>(lhs)->elements();
const auto& rhs_nodes = std::static_pointer_cast<HashMap>(rhs)->elements();
if (lhs_nodes.size() != rhs_nodes.size()) {
return false;
}
for (const auto& [key, value] : lhs_nodes) {
auto it = rhs_nodes.find(key);
if (it == rhs_nodes.cend() || !equal(value, it->second)) {
return false;
}
}
return true;
}
if (is<String>(lhs.get()) && is<String>(rhs.get())
&& std::static_pointer_cast<String>(lhs)->data() == std::static_pointer_cast<String>(rhs)->data()) {
return true;
}
if (is<Keyword>(lhs.get()) && is<Keyword>(rhs.get())
&& std::static_pointer_cast<Keyword>(lhs)->keyword() == std::static_pointer_cast<Keyword>(rhs)->keyword()) {
return true;
}
if (is<Number>(lhs.get()) && is<Number>(rhs.get())
&& std::static_pointer_cast<Number>(lhs)->number() == std::static_pointer_cast<Number>(rhs)->number()) {
return true;
}
if (is<Constant>(lhs.get()) && is<Constant>(rhs.get())
&& std::static_pointer_cast<Constant>(lhs)->state() == std::static_pointer_cast<Constant>(rhs)->state()) {
return true;
}
if (is<Symbol>(lhs.get()) && is<Symbol>(rhs.get())
&& std::static_pointer_cast<Symbol>(lhs)->symbol() == std::static_pointer_cast<Symbol>(rhs)->symbol()) {
return true;
}
return false;
};
bool result = true;
auto it = nodes.begin();
auto it_next = std::next(nodes.begin());
for (; it_next != nodes.end(); ++it, ++it_next) {
if (!equal(*it, *it_next)) {
result = false;
break;
}
}
return makePtr<Constant>((result) ? Constant::True : Constant::False);
});
ADD_FUNCTION(
"read-string",
{
CHECK_ARG_COUNT_IS("read-string", nodes.size(), 1);
VALUE_CAST(node, String, nodes.front());
std::string input = node->data();
return read(input);
});
ADD_FUNCTION(
"slurp",
{
CHECK_ARG_COUNT_IS("slurp", nodes.size(), 1);
VALUE_CAST(node, String, nodes.front());
std::string path = node->data();
auto file = ruc::File(path);
return makePtr<String>(file.data());
});
ADD_FUNCTION(
"eval",
{
CHECK_ARG_COUNT_IS("eval", nodes.size(), 1);
return eval(nodes.front(), nullptr);
});
// (atom 1)
ADD_FUNCTION(
"atom",
{
CHECK_ARG_COUNT_IS("atom", nodes.size(), 1);
return makePtr<Atom>(nodes.front());
});
// (deref myatom)
ADD_FUNCTION(
"deref",
{
CHECK_ARG_COUNT_IS("deref", nodes.size(), 1);
VALUE_CAST(atom, Atom, nodes.front());
return atom->deref();
});
// (reset! myatom 2)
ADD_FUNCTION(
"reset!",
{
CHECK_ARG_COUNT_IS("reset!", nodes.size(), 2);
VALUE_CAST(atom, Atom, nodes.front());
auto value = *std::next(nodes.begin());
atom->reset(value);
return value;
});
// (swap! myatom (fn* [x y] (+ 1 x y)) 2) -> (deref (def! myatom (atom ((fn* [x y] (+ 1 x y)) (deref myatom) 2))))
ADD_FUNCTION(
"swap!",
{
CHECK_ARG_COUNT_AT_LEAST("swap!", nodes.size(), 2);
VALUE_CAST(atom, Atom, nodes.front());
VALUE_CAST(callable, Callable, (*std::next(nodes.begin())));
// Remove atom and function from the argument list, add atom value
nodes.pop_front();
nodes.pop_front();
nodes.push_front(atom->deref());
ValuePtr value = nullptr;
if (is<Function>(callable.get())) {
auto function = std::static_pointer_cast<Function>(callable)->function();
value = function(nodes);
}
else {
auto lambda = std::static_pointer_cast<Lambda>(callable);
value = eval(lambda->body(), Environment::create(lambda, nodes));
}
return atom->reset(value);
});
// (cons 1 (list 2 3)) -> (1 2 3)
ADD_FUNCTION(
"cons",
{
CHECK_ARG_COUNT_IS("cons", nodes.size(), 2);
VALUE_CAST(collection, Collection, (*std::next(nodes.begin())));
auto result = makePtr<List>(collection->nodes());
result->addFront(nodes.front());
return result;
});
// (concat (list 1) (list 2 3)) -> (1 2 3)
ADD_FUNCTION(
"concat",
{
std::list<ValuePtr> result_nodes;
for (auto node : nodes) {
VALUE_CAST(collection, Collection, node);
auto argument_nodes = collection->nodes();
result_nodes.splice(result_nodes.end(), argument_nodes);
}
return makePtr<List>(result_nodes);
});
// (vec (list 1 2 3)) -> [1 2 3]
ADD_FUNCTION(
"vec",
{
CHECK_ARG_COUNT_IS("vec", nodes.size(), 1);
if (is<Vector>(nodes.front().get())) {
return nodes.front();
}
VALUE_CAST(collection, Collection, nodes.front());
return makePtr<Vector>(collection->nodes());
});
// (nth (list 1 2 3) 0) -> 1
ADD_FUNCTION(
"nth",
{
CHECK_ARG_COUNT_IS("nth", nodes.size(), 2);
VALUE_CAST(collection, Collection, nodes.front());
VALUE_CAST(number_node, Number, (*std::next(nodes.begin())));
const auto& collection_nodes = collection->nodes();
auto index = (size_t)number_node->number();
if (number_node->number() < 0 || index >= collection_nodes.size()) {
Error::the().add("index is out of range");
return nullptr;
}
auto result = collection_nodes.cbegin();
for (size_t i = 0; i < index; ++i) {
result++;
}
return *result;
});
// (first (list 1 2 3)) -> 1
ADD_FUNCTION(
"first",
{
CHECK_ARG_COUNT_IS("first", nodes.size(), 1);
if (is<Constant>(nodes.front().get())
&& std::static_pointer_cast<Constant>(nodes.front())->state() == Constant::Nil) {
return makePtr<Constant>();
}
VALUE_CAST(collection, Collection, nodes.front());
return (collection->empty()) ? makePtr<Constant>() : collection->front();
});
// (rest (list 1 2 3)) -> (2 3)
ADD_FUNCTION(
"rest",
{
CHECK_ARG_COUNT_IS("rest", nodes.size(), 1);
if (is<Constant>(nodes.front().get())
&& std::static_pointer_cast<Constant>(nodes.front())->state() == Constant::Nil) {
return makePtr<List>();
}
VALUE_CAST(collection, Collection, nodes.front());
return makePtr<List>(collection->rest());
});
// (apply + 1 2 (list 3 4)) -> (+ 1 2 3 4)
ADD_FUNCTION(
"apply",
{
CHECK_ARG_COUNT_AT_LEAST("apply", nodes.size(), 2);
auto callable = nodes.front();
IS_VALUE(Callable, callable);
VALUE_CAST(collection, Collection, nodes.back());
// Remove function and list from the arguments
nodes.pop_front();
nodes.pop_back();
// Append list nodes to the argument leftovers
auto collection_nodes = collection->nodes();
nodes.splice(nodes.end(), collection_nodes);
ValuePtr value = nullptr;
if (is<Function>(callable.get())) {
auto function = std::static_pointer_cast<Function>(callable)->function();
value = function(nodes);
}
else {
auto lambda = std::static_pointer_cast<Lambda>(callable);
value = eval(lambda->body(), Environment::create(lambda, nodes));
}
return value;
});
// (map (fn* (x) (* x 2)) (list 1 2 3))
ADD_FUNCTION(
"map",
{
CHECK_ARG_COUNT_IS("map", nodes.size(), 2);
VALUE_CAST(callable, Callable, nodes.front());
VALUE_CAST(collection, Collection, nodes.back());
const auto& collection_nodes = collection->nodes();
auto result = makePtr<List>();
if (is<Function>(callable.get())) {
auto function = std::static_pointer_cast<Function>(callable)->function();
for (const auto& node : collection_nodes) {
result->add(function({ node }));
}
}
else {
auto lambda = std::static_pointer_cast<Lambda>(callable);
for (const auto& node : collection_nodes) {
result->add(eval(lambda->body(), Environment::create(lambda, { node })));
}
}
return result;
});
// (throw x)
ADD_FUNCTION(
"throw",
{
CHECK_ARG_COUNT_IS("throw", nodes.size(), 1);
Error::the().add(nodes.front());
return nullptr;
})
// -----------------------------------------
#define IS_CONSTANT(name, constant) \
{ \
CHECK_ARG_COUNT_IS(name, nodes.size(), 1); \
\
return makePtr<Constant>( \
is<Constant>(nodes.front().get()) \
&& std::static_pointer_cast<Constant>(nodes.front())->state() == constant); \
}
// (nil? nil)
ADD_FUNCTION("nil?", IS_CONSTANT("nil?", Constant::Nil));
ADD_FUNCTION("true?", IS_CONSTANT("true?", Constant::True));
ADD_FUNCTION("false?", IS_CONSTANT("false?", Constant::False));
// -----------------------------------------
#define IS_TYPE(type) \
{ \
bool result = true; \
\
if (nodes.size() == 0) { \
result = false; \
} \
\
for (auto node : nodes) { \
if (!is<type>(node.get())) { \
result = false; \
break; \
} \
} \
\
return makePtr<Constant>(result); \
}
// (symbol? 'foo)
ADD_FUNCTION("atom?", IS_TYPE(Atom));
ADD_FUNCTION("keyword?", IS_TYPE(Keyword));
ADD_FUNCTION("list?", IS_TYPE(List));
ADD_FUNCTION("map?", IS_TYPE(HashMap));
ADD_FUNCTION("number?", IS_TYPE(Number));
ADD_FUNCTION("sequential?", IS_TYPE(Collection));
ADD_FUNCTION("string?", IS_TYPE(String));
ADD_FUNCTION("symbol?", IS_TYPE(Symbol));
ADD_FUNCTION("vector?", IS_TYPE(Vector));
ADD_FUNCTION(
"fn?",
{
bool result = true;
if (nodes.size() == 0) {
result = false;
}
for (auto node : nodes) {
if (!is<Callable>(node.get())) {
result = false;
break;
}
if (is<Lambda>(node.get())) {
auto lambda = std::static_pointer_cast<Lambda>(node);
if (lambda->isMacro()) {
result = false;
break;
}
}
}
return makePtr<Constant>(result);
});
ADD_FUNCTION(
"macro?",
{
bool result = true;
if (nodes.size() == 0) {
result = false;
}
for (auto node : nodes) {
if (!is<Lambda>(node.get())) {
result = false;
break;
}
auto lambda = std::static_pointer_cast<Lambda>(node);
if (!lambda->isMacro()) {
result = false;
break;
}
}
return makePtr<Constant>(result);
});
// -----------------------------------------
#define STRING_TO_TYPE(name, type) \
{ \
CHECK_ARG_COUNT_IS(name, nodes.size(), 1); \
\
if (is<type>(nodes.front().get())) { \
return nodes.front(); \
} \
\
VALUE_CAST(stringValue, String, nodes.front()); \
\
return makePtr<type>(stringValue->data()); \
}
// (symbol "foo")
ADD_FUNCTION("symbol", STRING_TO_TYPE("symbol", Symbol));
ADD_FUNCTION("keyword", STRING_TO_TYPE("keyword", Keyword));
// -----------------------------------------
ADD_FUNCTION(
"vector",
{
auto result = makePtr<Vector>();
for (auto node : nodes) {
result->add(node);
}
return result;
});
ADD_FUNCTION(
"hash-map",
{
CHECK_ARG_COUNT_EVEN("hash-map", nodes.size());
auto result = makePtr<HashMap>();
for (auto it = nodes.begin(); it != nodes.end(); std::advance(it, 2)) {
result->add(*it, *(std::next(it)));
}
return result;
});
// (assoc {:a 1 :b 2} :a 3 :c 1)
ADD_FUNCTION(
"assoc",
{
CHECK_ARG_COUNT_AT_LEAST("assoc", nodes.size(), 1);
VALUE_CAST(hash_map, HashMap, nodes.front());
nodes.pop_front();
CHECK_ARG_COUNT_EVEN("assoc", nodes.size());
auto result = makePtr<HashMap>(hash_map->elements());
for (auto it = nodes.begin(); it != nodes.end(); std::advance(it, 2)) {
result->add(*it, *(std::next(it)));
}
return result;
});
ADD_FUNCTION(
"dissoc",
{
CHECK_ARG_COUNT_AT_LEAST("dissoc", nodes.size(), 1);
VALUE_CAST(hash_map, HashMap, nodes.front());
nodes.pop_front();
auto result = makePtr<HashMap>(hash_map->elements());
for (auto node : nodes) {
result->remove(node);
}
return result;
});
// (get {:kw "value"} :kw)
ADD_FUNCTION(
"get",
{
CHECK_ARG_COUNT_AT_LEAST("get", nodes.size(), 1);
if (is<Constant>(nodes.front().get())
&& std::static_pointer_cast<Constant>(nodes.front())->state() == Constant::Nil) {
return makePtr<Constant>();
}
VALUE_CAST(hash_map, HashMap, nodes.front());
nodes.pop_front();
if (nodes.size() == 0) {
return makePtr<Constant>();
}
auto result = hash_map->get(nodes.front());
return (result) ? result : makePtr<Constant>();
});
ADD_FUNCTION(
"contains?",
{
CHECK_ARG_COUNT_AT_LEAST("contains?", nodes.size(), 1);
VALUE_CAST(hash_map, HashMap, nodes.front());
nodes.pop_front();
if (nodes.size() == 0) {
return makePtr<Constant>(false);
}
return makePtr<Constant>(hash_map->exists(nodes.front()));
});
ADD_FUNCTION(
"keys",
{
CHECK_ARG_COUNT_AT_LEAST("keys", nodes.size(), 1);
VALUE_CAST(hash_map, HashMap, nodes.front());
auto result = makePtr<List>();
auto elements = hash_map->elements();
for (auto pair : elements) {
if (pair.first.front() == 0x7f) { // 127
result->add(makePtr<Keyword>(pair.first.substr(1)));
}
else {
result->add(makePtr<String>(pair.first));
}
}
return result;
});
ADD_FUNCTION(
"vals",
{
CHECK_ARG_COUNT_AT_LEAST("vals", nodes.size(), 1);
VALUE_CAST(hash_map, HashMap, nodes.front());
auto result = makePtr<List>();
auto elements = hash_map->elements();
for (auto pair : elements) {
result->add(pair.second);
}
return result;
});
ADD_FUNCTION(
"readline",
{
CHECK_ARG_COUNT_IS("readline", nodes.size(), 1);
VALUE_CAST(prompt, String, nodes.front());
return readline(prompt->data());
});
ADD_FUNCTION("time-ms", {
CHECK_ARG_COUNT_IS("time-ms", nodes.size(), 0);
int64_t elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch())
.count();
return makePtr<Number>(elapsed);
});
// (meta [1 2 3])
ADD_FUNCTION(
"meta",
{
CHECK_ARG_COUNT_IS("meta", nodes.size(), 1);
auto front = nodes.front();
Value* front_raw_ptr = nodes.front().get();
if (!is<Collection>(front_raw_ptr) && // List / Vector
!is<HashMap>(front_raw_ptr) && // HashMap
!is<Callable>(front_raw_ptr)) { // Function / Lambda
Error::the().add(format("wrong argument type: Collection, HashMap or Callable, {}", front));
return nullptr;
}
return front->meta();
});
// (with-meta [1 2 3] "some metadata")
ADD_FUNCTION(
"with-meta",
{
CHECK_ARG_COUNT_IS("with-meta", nodes.size(), 2);
auto front = nodes.front();
Value* front_raw_ptr = nodes.front().get();
if (!is<Collection>(front_raw_ptr) && // List / Vector
!is<HashMap>(front_raw_ptr) && // HashMap
!is<Callable>(front_raw_ptr)) { // Function / Lambda
Error::the().add(format("wrong argument type: Collection, HashMap or Callable, {}", front));
return nullptr;
}
return front->withMeta(nodes.back());
});
// (conj '(1 2 3) 4 5 6) -> (6 5 4 1 2 3)
// (conj [1 2 3] 4 5 6) -> [1 2 3 4 5 6]
ADD_FUNCTION(
"conj",
{
CHECK_ARG_COUNT_AT_LEAST("conj", nodes.size(), 1);
VALUE_CAST(collection, Collection, nodes.front());
nodes.pop_front();
auto collection_nodes = collection->nodes();
if (is<List>(collection.get())) {
nodes.reverse();
nodes.splice(nodes.end(), collection_nodes);
auto result = makePtr<List>(nodes);
return result;
}
nodes.splice(nodes.begin(), collection_nodes);
auto result = makePtr<Vector>(nodes);
return result;
});
// (seq '(1 2 3)) -> (1 2 3)
// (seq [1 2 3]) -> (1 2 3)
// (seq "foo") -> ("f" "o" "o")
ADD_FUNCTION(
"seq",
{
CHECK_ARG_COUNT_IS("seq", nodes.size(), 1);
auto front = nodes.front();
Value* front_raw_ptr = front.get();
if (is<Constant>(front_raw_ptr) && std::static_pointer_cast<Constant>(front)->state() == Constant::Nil) {
return makePtr<Constant>();
}
if (is<Collection>(front_raw_ptr)) {
auto collection = std::static_pointer_cast<Collection>(front);
if (collection->empty()) {
return makePtr<Constant>();
}
if (is<List>(front_raw_ptr)) {
return front;
}
return makePtr<List>(collection->nodes());
}
if (is<String>(front_raw_ptr)) {
auto string = std::static_pointer_cast<String>(front);
if (string->empty()) {
return makePtr<Constant>();
}
auto result = makePtr<List>();
const auto& data = string->data();
for (const auto& character : data) {
result->add(makePtr<String>(character));
}
return result;
}
Error::the().add(format("wrong argument type: Collection or String, {}", front));
return nullptr;
});
// -----------------------------------------
void installFunctions(EnvironmentPtr env)
{
for (const auto& [name, lambda] : s_functions) {
env->set(name, makePtr<Function>(name, lambda));
}
}
} // namespace blaze