/* * Copyright (C) 2022 Riyyi * Copyright (C) 2022 Th3FrankXD * * SPDX-License-Identifier: MIT */ #include // uint8_t, uint32_t #include "cpu.h" #include "emu.h" #include "ruc/format/color.h" #include "ruc/format/print.h" #include "ruc/meta/assert.h" CPU::CPU(uint32_t frequency) : ProcessingUnit(frequency) // https://gbdev.io/pandocs/Power_Up_Sequence.html#cpu-registers // CGB registers , m_a(0x11) , m_b(0x0) , m_c(0x0) , m_d(0xff) , m_e(0x56) , m_h(0x0) , m_l(0x0d) , m_pc(0x0) , m_sp(0xfffe) // Flags , m_zf(0x1) , m_nf(0x0) , m_hf(0x0) , m_cf(0x0) { m_shared_registers.emplace("a", &m_a); m_shared_registers.emplace("b", &m_b); m_shared_registers.emplace("c", &m_c); m_shared_registers.emplace("d", &m_d); m_shared_registers.emplace("e", &m_e); m_shared_registers.emplace("h", &m_h); m_shared_registers.emplace("l", &m_l); m_shared_registers.emplace("sp", &m_sp); m_shared_registers.emplace("pc", &m_pc); m_shared_registers.emplace("zf", &m_zf); m_shared_registers.emplace("nf", &m_nf); m_shared_registers.emplace("hf", &m_hf); m_shared_registers.emplace("cf", &m_cf); } CPU::~CPU() { } // ----------------------------------------- void CPU::update() { m_wait_cycles--; if (m_wait_cycles <= 0) { // Read next opcode uint8_t opcode = read(m_pc); print("running opcode: {:#x}\n", opcode); switch (opcode) { case 0x20: jr8(); break; case 0x01: ld16(); break; case 0x02: ld8(); break; case 0x06: ld8(); break; case 0x08: ld16(); break; case 0x0a: ld8(); break; case 0x0d: dec8(); break; case 0x0e: ld8(); break; case 0x11: ld16(); break; case 0x12: ld8(); break; case 0x16: ld8(); break; case 0x1a: ld8(); break; case 0x1e: ld8(); break; case 0x21: ld16(); break; case 0x22: ld8(); break; case 0x26: ld8(); break; case 0x2a: ld8(); break; case 0x2e: ld8(); break; case 0x2f: misc(); break; case 0x31: ld16(); break; case 0x32: ld8(); break; case 0x36: ld8(); break; case 0x3a: ld8(); break; case 0x3e: ld8(); break; case 0xa8: xor8(); break; case 0xaf: xor8(); break; case 0xc3: jp16(); break; case 0xc6: add(); break; case 0xcd: call(); break; case 0xe0: ldh8(); break; case 0xf0: ldh8(); break; case 0xf8: ld16(); break; case 0xf9: ld16(); break; default: print("opcode {:#x} not implemented\n", opcode); VERIFY_NOT_REACHED(); } } } void CPU::add() { uint8_t opcode = pcRead(); uint8_t immediate = pcRead(); switch (opcode) { case 0xc6: // ADD A,d8, flags: Z 0 H C m_wait_cycles += 8; // Set flags m_nf = 0; m_hf = isCarry(m_a, immediate, 0x10); m_cf = isCarry(m_a, immediate, 0x100); // A = A + r m_a = (m_a + immediate) & 0xff; // Zero flag m_zf = m_a == 0; break; default: VERIFY_NOT_REACHED(); } } void CPU::dec8() { uint8_t opcode = pcRead(); switch (opcode) { case 0x0d: { // DEC C, flags: Z 1 H - m_wait_cycles += 4; // Set flags m_nf = 1; m_hf = isCarry(m_c, -1, 0x10); // C = C - 1 m_c = (m_c - 1) & 0xff; // Zero flag m_zf = m_c == 0; break; } default: VERIFY_NOT_REACHED(); } } void CPU::xor8() { uint8_t opcode = pcRead(); switch (opcode) { case 0xa8: // XOR B, flags: Z 0 0 0 m_nf = m_hf = m_cf = 0; m_a ^= m_b; m_zf = m_a == 0; break; case 0xaf: // XOR A, flags: 1 0 0 0 // A^A will always be 0 m_a = m_nf = m_hf = m_cf = 0; m_zf = 1; break; default: VERIFY_NOT_REACHED(); } } void CPU::ld8() { uint8_t opcode = pcRead(); switch (opcode) { case 0x02: // LD (BC),A m_wait_cycles += 8; write(bc(), m_a); break; case 0x06: // LD B,n m_wait_cycles += 8; m_b = pcRead(); break; case 0x0a: // LD A,(BC) m_wait_cycles += 8; m_a = read(bc()); break; case 0x0e: // LD C,n m_wait_cycles += 8; m_c = pcRead(); break; case 0x12: // LD (DE),A m_wait_cycles += 8; write(de(), m_a); break; case 0x16: // LD D,n m_wait_cycles += 8; m_d = pcRead(); break; case 0x1a: // LD A,(DE) m_wait_cycles += 8; m_a = read(de()); break; case 0x1e: // LD E,n m_wait_cycles += 8; m_e = pcRead(); break; case 0x22: { // LD (HL+),A == LD (HLI),A == LDI (HL),A m_wait_cycles += 8; // Put A into memory address in HL uint32_t address = hl(); write(address, m_a); // Increment HL address = (address + 1) & 0xffff; m_l = address & 0x00ff; m_h = address >> 8; break; } case 0x26: // LD H,n m_wait_cycles += 8; m_h = pcRead(); break; case 0x2a: { // LD A,(HL+) == LD A,(HLI) == LDI A,(HL) m_wait_cycles += 8; // Put value at address in HL into A uint32_t address = hl(); m_a = read(address); // Increment HL address = (address + 1) & 0xffff; m_l = address & 0x00ff; m_h = address >> 8; break; } case 0x2e: // LD L,n m_wait_cycles += 8; m_l = pcRead(); break; case 0x32: { // LD (HL-),A == LD (HLD),A == LDD (HL),A m_wait_cycles += 8; // Put A into memory address in HL uint32_t address = hl(); write(address, m_a); // Decrement HL address = (address - 1) & 0xffff; m_l = address & 0x00ff; m_h = address >> 8; break; } case 0x36: // LD (HL),n m_wait_cycles += 12; write(hl(), pcRead()); break; case 0x3a: { // LD A,(HL-) == LD A,(HLD) == LDD A,(HL) m_wait_cycles += 8; // Put value at address in HL into A uint32_t address = hl(); m_a = read(address); // Decrement HL address = (address + 1) & 0xffff; m_l = address & 0x00ff; m_h = address >> 8; break; } case 0x3e: // LD A,n m_wait_cycles += 8; m_a = pcRead(); break; default: VERIFY_NOT_REACHED(); } } void CPU::ldh8() { uint8_t opcode = pcRead(); switch (opcode) { case 0xe0: // LD ($ff00 + n),A == LDH (n),A m_wait_cycles += 12; // Put value in A into address (0xff00 + next byte in memory) ffWrite(pcRead(), m_a); break; case 0xf0: // LD A,($ff00 + n) == LDH A,(n) m_wait_cycles += 12; // Put value at address (0xff00 + next byte in memory) into A m_a = ffRead(pcRead()); break; default: VERIFY_NOT_REACHED(); } } void CPU::ld16() { uint8_t opcode = pcRead(); switch (opcode) { case 0x01: { m_wait_cycles += 12; write(bc(), pcRead16()); break; } case 0x08: { // LD (nn),SP m_wait_cycles += 20; // Put value of SP into address given by next 2 bytes in memory // TODO break; } case 0x11: // LD DE,nn m_wait_cycles += 12; write(de(), pcRead16()); break; case 0x21: // LD HL,nn m_wait_cycles += 12; write(hl(), pcRead16()); break; case 0x31: { // LD SP,nn m_wait_cycles += 12; m_sp = pcRead16(); break; } case 0xf8: { // LD HL,SP + e8 == LDHL SP,e8 m_wait_cycles += 12; // Put SP + next (signed) byte in memory into HL uint32_t signed_data = (pcRead() ^ 0x80) - 0x80; uint32_t sum = m_sp + signed_data; m_h = sum >> 8; m_l = sum & 0xff; // Set flags m_zf = 0; m_nf = 0; m_hf = isCarry(m_sp, signed_data, 0x10); m_cf = isCarry(m_sp, signed_data, 0x100); break; } case 0xf9: { // LD SP,HL m_wait_cycles += 8; m_sp = hl(); break; } default: VERIFY_NOT_REACHED(); } } void CPU::call() { uint8_t opcode = pcRead(); switch (opcode) { case 0xcd: { // CALL nn m_wait_cycles += 24; uint32_t data = pcRead16(); // Push address of next 2 bytes in memory onto stack m_sp = (m_sp - 1) & 0xffff; write(m_sp, data >> 8); m_sp = (m_sp - 1) & 0xffff; write(m_sp, data & 0x00ff); // Jump to this address m_pc = data; break; } default: VERIFY_NOT_REACHED(); } } void CPU::jp16() { uint8_t opcode = pcRead(); switch (opcode) { case 0xc3: // JP nn m_wait_cycles += 16; m_pc = pcRead16(); break; default: VERIFY_NOT_REACHED(); } } // Jump relative void CPU::jr8() { uint8_t opcode = pcRead(); switch (opcode) { case 0x20: { // JR NZ,e8 m_wait_cycles += 8; if (!m_zf) { m_wait_cycles += 4; // TODO } break; } default: VERIFY_NOT_REACHED(); } } void CPU::misc() { uint8_t opcode = pcRead(); switch (opcode) { case 0x2f: // CPL, flags: - 1 1 - m_wait_cycles += 4; // Complement register A (flip all bits) m_a ^= 0x00ff; // equivalent to: m_a = ~m_a & 0x00ff // Set flags m_nf = m_hf = 1; break; default: VERIFY_NOT_REACHED(); } } // ----------------------------------------- uint32_t CPU::pcRead() { uint32_t data = Emu::the().readMemory(m_pc) & 0x00ff; m_pc = (m_pc + 1) & 0xffff; return data; } void CPU::write(uint32_t address, uint32_t value) { Emu::the().writeMemory(address, value & 0x00ff); } uint32_t CPU::read(uint32_t address) { return Emu::the().readMemory(address) & 0x00ff; } void CPU::ffWrite(uint32_t address, uint32_t value) { Emu::the().writeMemory(address | (0xff << 8), value & 0x00ff); } uint32_t CPU::ffRead(uint32_t address) { return Emu::the().readMemory(address | (0xff << 8)) & 0x00ff; } bool CPU::isCarry(uint32_t lhs, uint32_t rhs, uint32_t limit_bit) { // limit_bit values: // 8-bit half-carry = 0x10 or 16 // 8-bit carry = 0x100 or 256 // 16-bit half-carry = 0x1000 or 4096 // 16-bit carry = 0x10000 or 65536 // Example for 8-bit half-carry: // 0b00111110 62 | 0b00111000 56 // 0b00100010 34 + | 0b00010001 17 + // --------------- | --------------- // 0b01100000 96 | 0b01001001 73 // | // 0b00111110 62 | 0b00111000 56 // 0b00100010 34 ^ | 0b00010001 17 ^ // --------------- | --------------- // 0b00011100 | 0b00101001 // 0b01100000 96 ^ | 0b01001001 73 ^ // --------------- | --------------- // 0b01111100 | 0b01100000 // 0b00010000 16 & | 0b00010000 16 & // --------------- | --------------- // 0b00010000 = true! | 0b00000000 = false! return (lhs ^ rhs ^ (lhs + rhs)) & limit_bit; } // ----------------------------------------- void Formatter::parse(Parser& parser) { parser.parseSpecifier(specifier, Parser::ParameterType::UserDefined); } void Formatter::format(Builder& builder, const CPU& value) const { if (!specifier.alternativeForm) { builder.putString( ::format("| AF {:#06x} | BC {:#06x} | DE {:#06x} | HL {:#06x} | PC {:#06x} | SP {:#06x} |", value.af(), value.bc(), value.de(), value.hl(), value.pc(), value.sp())); return; } Formatter formatter { .specifier = specifier }; builder.putString("AF: "); formatter.format(builder, value.af()); builder.putString("\nBC: "); formatter.format(builder, value.bc()); builder.putString("\nDE: "); formatter.format(builder, value.de()); builder.putString("\nHL: "); formatter.format(builder, value.hl()); builder.putString("\nPC: "); formatter.format(builder, value.pc()); builder.putString("\nSP: "); formatter.format(builder, value.sp()); }