GarbAGE (Garbage Accurate GameBoy Emulator)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1782 lines
42 KiB

/*
* Copyright (C) 2022 Riyyi
* Copyright (C) 2022 Th3FrankXD
*
* SPDX-License-Identifier: MIT
*/
#include <cstdint> // uint8_t, uint32_t
#include "cpu.h"
#include "emu.h"
#include "ruc/format/color.h"
#include "ruc/format/print.h"
#include "ruc/meta/assert.h"
#include "ruc/meta/core.h"
CPU::CPU(uint32_t frequency)
: ProcessingUnit(frequency)
// https://gbdev.io/pandocs/Power_Up_Sequence.html#cpu-registers
// CGB registers
, m_a(0x11)
, m_b(0x0)
, m_c(0x0)
, m_d(0xff)
, m_e(0x56)
, m_h(0x0)
, m_l(0x0d)
, m_pc(0x0)
, m_sp(0xfffe)
// Flags
, m_zf(0x1)
, m_nf(0x0)
, m_hf(0x0)
, m_cf(0x0)
{
// FIXME: Figure out if other ProcessingUnits require access to these registers,
// delete this functionality if they dont
m_shared_registers.emplace("a", &m_a);
m_shared_registers.emplace("b", &m_b);
m_shared_registers.emplace("c", &m_c);
m_shared_registers.emplace("d", &m_d);
m_shared_registers.emplace("e", &m_e);
m_shared_registers.emplace("h", &m_h);
m_shared_registers.emplace("l", &m_l);
m_shared_registers.emplace("sp", &m_sp);
m_shared_registers.emplace("pc", &m_pc);
m_shared_registers.emplace("zf", &m_zf);
m_shared_registers.emplace("nf", &m_nf);
m_shared_registers.emplace("hf", &m_hf);
m_shared_registers.emplace("cf", &m_cf);
}
CPU::~CPU()
{
}
// -----------------------------------------
void CPU::handleInterrupt(uint32_t interrupt_flag, uint8_t interrupt_source, uint8_t address)
{
// Clear interrupt
m_ime = 0;
Emu::the().writeMemory(0xff0f, interrupt_flag & (~interrupt_source));
// Call
m_wait_cycles += 20;
// Push address of the program counter on the stack, such that RET can pop it later
m_sp = (m_sp - 1) & 0xffff;
write(m_sp, m_pc >> 8); // msb(PC)
m_sp = (m_sp - 1) & 0xffff;
write(m_sp, m_pc & 0xff); // lsb(PC)
// Jump to address
m_pc = address;
}
void CPU::update()
{
// -------------------------------------
// Interrupt Service Routine
bool effective_ime = m_ime;
// IME only becomes active after the instruction following EI
if (m_should_enable_ime) {
m_ime = 1;
m_should_enable_ime = 0;
}
if (effective_ime) {
// Get the 5 lower bits of the IE (interrupt enable) address
uint32_t interrupt_enabled = Emu::the().readMemory(0xffff) & 0x1f;
// Get the 5 lower bits of the IF (interrupt flag) address
uint32_t interrupt_flag = Emu::the().readMemory(0xff0f) & 0x1f;
uint32_t interrupt = interrupt_enabled & interrupt_flag;
for (uint8_t i = 0; i < 5; ++i) {
if (interrupt & BIT(i)) {
handleInterrupt(interrupt_flag, BIT(i), i * 8 + 0x40);
break;
}
}
}
// -------------------------------------
// Run opcodes
m_wait_cycles--;
// TODO: convert to early-return
if (m_wait_cycles <= 0) {
// print(ruc::format::Emphasis::Underline | ruc::format::Emphasis::Bold | fg(ruc::format::TerminalColor::Blue), "{:#06x}\n", *this);
// Read next opcode
uint8_t opcode = read(m_pc);
// print("running opcode: {:#04x} @ ({:#06x})\n", opcode, m_pc);
switch (opcode) {
case 0x10: /* TODO */ m_pc += 2; break;
case 0x00: nop(); break;
case 0x01: ldi16(); break;
case 0x02: ldr8(); break;
case 0x03: inc16(); break;
case 0x04: inc8(); break;
case 0x05: dec8(); break;
case 0x06: ldi8(); break;
case 0x07: ra(); break;
case 0x08: ldr16(); break;
case 0x09: addr16(); break;
case 0x0a: ldr8(); break;
case 0x0b: dec16(); break;
case 0x0c: inc8(); break;
case 0x0d: dec8(); break;
case 0x0e: ldi8(); break;
case 0x0f: ra(); break;
case 0x11: ldi16(); break;
case 0x12: ldr8(); break;
case 0x13: inc16(); break;
case 0x14: inc8(); break;
case 0x15: dec8(); break;
case 0x16: ldi8(); break;
case 0x17: ra(); break;
case 0x18: jrs8(); break;
case 0x19: addr16(); break;
case 0x1a: ldr8(); break;
case 0x1b: dec16(); break;
case 0x1c: inc8(); break;
case 0x1d: dec8(); break;
case 0x1e: ldi8(); break;
case 0x1f: ra(); break;
case 0x20: jrs8(); break;
case 0x21: ldi16(); break;
case 0x22: ldr8(); break;
case 0x23: inc16(); break;
case 0x24: inc8(); break;
case 0x25: dec8(); break;
case 0x26: ldi8(); break;
case 0x27: daa(); break;
case 0x28: jrs8(); break;
case 0x29: addr16(); break;
case 0x2a: lda8(); break;
case 0x2b: dec16(); break;
case 0x2c: inc8(); break;
case 0x2d: dec8(); break;
case 0x2e: ldi8(); break;
case 0x2f: misc(); break;
case 0x30: jrs8(); break;
case 0x31: ldi16(); break;
case 0x32: ldr8(); break;
case 0x33: inc16(); break;
case 0x34: inc8(); break;
case 0x35: dec8(); break;
case 0x36: ldi8(); break;
case 0x37: misc(); break;
case 0x38: jrs8(); break;
case 0x39: addr16(); break;
case 0x3a: lda8(); break;
case 0x3b: dec16(); break;
case 0x3c: inc8(); break;
case 0x3d: dec8(); break;
case 0x3e: ldi8(); break;
case 0x3f: misc(); break;
case 0x40: ldr8(); break;
case 0x41: ldr8(); break;
case 0x42: ldr8(); break;
case 0x43: ldr8(); break;
case 0x44: ldr8(); break;
case 0x45: ldr8(); break;
case 0x46: ldr8(); break;
case 0x47: ldr8(); break;
case 0x48: ldr8(); break;
case 0x49: ldr8(); break;
case 0x4a: ldr8(); break;
case 0x4b: ldr8(); break;
case 0x4c: ldr8(); break;
case 0x4d: ldr8(); break;
case 0x4e: ldr8(); break;
case 0x4f: ldr8(); break;
case 0x50: ldr8(); break;
case 0x51: ldr8(); break;
case 0x52: ldr8(); break;
case 0x53: ldr8(); break;
case 0x54: ldr8(); break;
case 0x55: ldr8(); break;
case 0x56: ldr8(); break;
case 0x57: ldr8(); break;
case 0x58: ldr8(); break;
case 0x59: ldr8(); break;
case 0x5a: ldr8(); break;
case 0x5b: ldr8(); break;
case 0x5c: ldr8(); break;
case 0x5d: ldr8(); break;
case 0x5e: ldr8(); break;
case 0x5f: ldr8(); break;
case 0x60: ldr8(); break;
case 0x61: ldr8(); break;
case 0x62: ldr8(); break;
case 0x63: ldr8(); break;
case 0x64: ldr8(); break;
case 0x65: ldr8(); break;
case 0x66: ldr8(); break;
case 0x67: ldr8(); break;
case 0x68: ldr8(); break;
case 0x69: ldr8(); break;
case 0x6a: ldr8(); break;
case 0x6b: ldr8(); break;
case 0x6c: ldr8(); break;
case 0x6d: ldr8(); break;
case 0x6e: ldr8(); break;
case 0x6f: ldr8(); break;
case 0x70: ldr8(); break;
case 0x71: ldr8(); break;
case 0x72: ldr8(); break;
case 0x73: ldr8(); break;
case 0x74: ldr8(); break;
case 0x75: ldr8(); break;
case 0x77: ldr8(); break;
case 0x78: ldr8(); break;
case 0x79: ldr8(); break;
case 0x7a: ldr8(); break;
case 0x7b: ldr8(); break;
case 0x7c: ldr8(); break;
case 0x7d: ldr8(); break;
case 0x7e: ldr8(); break;
case 0x7f: ldr8(); break;
case 0x80: add8(); break;
case 0x81: add8(); break;
case 0x82: add8(); break;
case 0x83: add8(); break;
case 0x84: add8(); break;
case 0x85: add8(); break;
case 0x86: add8(); break;
case 0x87: add8(); break;
case 0x88: adc8(); break;
case 0x89: adc8(); break;
case 0x8a: adc8(); break;
case 0x8b: adc8(); break;
case 0x8c: adc8(); break;
case 0x8d: adc8(); break;
case 0x8e: adc8(); break;
case 0x8f: adc8(); break;
case 0x90: sub8(); break;
case 0x91: sub8(); break;
case 0x92: sub8(); break;
case 0x93: sub8(); break;
case 0x94: sub8(); break;
case 0x95: sub8(); break;
case 0x96: sub8(); break;
case 0x97: sub8(); break;
case 0x98: sbc8(); break;
case 0x99: sbc8(); break;
case 0x9a: sbc8(); break;
case 0x9b: sbc8(); break;
case 0x9c: sbc8(); break;
case 0x9d: sbc8(); break;
case 0x9e: sbc8(); break;
case 0x9f: sbc8(); break;
case 0xa0: and8(); break;
case 0xa1: and8(); break;
case 0xa2: and8(); break;
case 0xa3: and8(); break;
case 0xa4: and8(); break;
case 0xa5: and8(); break;
case 0xa6: and8(); break;
case 0xa7: and8(); break;
case 0xa8: xor8(); break;
case 0xa9: xor8(); break;
case 0xaa: xor8(); break;
case 0xab: xor8(); break;
case 0xac: xor8(); break;
case 0xad: xor8(); break;
case 0xae: xor8(); break;
case 0xaf: xor8(); break;
case 0xb0: or8(); break;
case 0xb1: or8(); break;
case 0xb2: or8(); break;
case 0xb3: or8(); break;
case 0xb4: or8(); break;
case 0xb5: or8(); break;
case 0xb6: or8(); break;
case 0xb7: or8(); break;
case 0xb8: cp(); break;
case 0xb9: cp(); break;
case 0xba: cp(); break;
case 0xbb: cp(); break;
case 0xbc: cp(); break;
case 0xbd: cp(); break;
case 0xbe: cp(); break;
case 0xbf: cp(); break;
case 0xc0: ret(); break;
case 0xc1: pop(); break;
case 0xc2: jp16(); break;
case 0xc3: jp16(); break;
case 0xc4: call(); break;
case 0xc5: push(); break;
case 0xc6: add8(); break;
case 0xc7: rst(); break;
case 0xc8: ret(); break;
case 0xc9: ret(); break;
case 0xca: jp16(); break;
case 0xcb: prefix(); break;
case 0xcc: call(); break;
case 0xcd: call(); break;
case 0xce: adc8(); break;
case 0xcf: rst(); break;
case 0xd0: ret(); break;
case 0xd1: pop(); break;
case 0xd2: jp16(); break;
case 0xd4: call(); break;
case 0xd5: push(); break;
case 0xd6: sub8(); break;
case 0xd7: rst(); break;
case 0xd8: ret(); break;
case 0xd9: ret(); break;
case 0xda: jp16(); break;
case 0xdc: call(); break;
case 0xde: sbc8(); break;
case 0xdf: rst(); break;
case 0xe0: ldff8(); break;
case 0xe1: pop(); break;
case 0xe2: ldff8(); break;
case 0xe5: push(); break;
case 0xe6: and8(); break;
case 0xe7: rst(); break;
case 0xe8: adds8(); break;
case 0xe9: jp16(); break;
case 0xea: ldr8(); break;
case 0xee: xor8(); break;
case 0xef: rst(); break;
case 0xf0: ldff8(); break;
case 0xf1: pop(); break;
case 0xf2: ldff8(); break;
case 0xf3: misc(); break;
case 0xf5: push(); break;
case 0xf6: or8(); break;
case 0xf7: rst(); break;
case 0xf8: ldr16(); break;
case 0xf9: ldr16(); break;
case 0xfa: lda8(); break;
case 0xfb: misc(); break;
case 0xfe: cp(); break;
case 0xff: rst(); break;
case 0xd3:
case 0xdb:
case 0xdd:
case 0xe3:
case 0xe4:
case 0xeb:
case 0xec:
case 0xed:
case 0xf4:
case 0xfc:
case 0xfd:
print("illegal opcode\n");
VERIFY_NOT_REACHED();
default:
print("opcode {:#04x} not implemented\n", opcode);
print("immediate: {:#04x}\n", pcRead());
VERIFY_NOT_REACHED();
}
}
}
// -------------------------------------
void CPU::adc8()
{
auto adc = [this](uint8_t register_) -> void {
// ADC A,r8, flags: Z 0 H C
m_wait_cycles += 4;
uint32_t old_carry = m_cf != 0;
// Set flags
m_nf = 0;
m_hf = isCarry(0xf, m_a, register_, old_carry);
m_cf = isCarry(0xff, m_a, register_, old_carry);
// Add the value in r8 plus the carry flag to A
m_a = (m_a + register_ + old_carry) & 0xff;
// Zero flag
m_zf = (m_a == 0);
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0x88: /* ADC A,B */ adc(m_b); break;
case 0x89: /* ADC A,C */ adc(m_c); break;
case 0x8a: /* ADC A,D */ adc(m_d); break;
case 0x8b: /* ADC A,E */ adc(m_e); break;
case 0x8c: /* ADC A,H */ adc(m_h); break;
case 0x8d: /* ADC A,L */ adc(m_l); break;
case 0x8e: /* ADC A,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
adc(read(hl()));
break;
}
case 0x8f: /* ADC A,A */ adc(m_a); break;
case 0xce: /* ADC A,i8 */ {
m_wait_cycles += 4; // + 4 = 8 total
adc(pcRead());
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::add8()
{
auto add = [this](uint8_t register_) -> void {
// ADD A,r8, flags: Z 0 H C
m_wait_cycles += 4;
// Set flags
m_nf = 0;
m_hf = isCarry(0xf, m_a, register_);
m_cf = isCarry(0xff, m_a, register_);
// Add the value in r8 to A
m_a = (m_a + register_) & 0xff;
// Zero flag
m_zf = m_a == 0;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0x80: /* ADD A,B */ add(m_b); break;
case 0x81: /* ADD A,C */ add(m_c); break;
case 0x82: /* ADD A,D */ add(m_d); break;
case 0x83: /* ADD A,E */ add(m_e); break;
case 0x84: /* ADD A,H */ add(m_h); break;
case 0x85: /* ADD A,L */ add(m_l); break;
case 0x86: /* ADD A,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
add(read(hl()));
break;
}
case 0x87: /* ADD A,A */ add(m_a); break;
case 0xc6: /* ADD A,i8 */ {
m_wait_cycles += 4; // + 4 = 8 total
add(pcRead());
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::and8()
{
auto bitwise_and = [this](uint32_t byte) {
// AND r8, flags: Z 0 1 0
m_wait_cycles += 4;
// Set flags
m_nf = 0;
m_hf = 1;
m_cf = 0;
// Bitwise AND between the value in r8 and A
m_a = m_a & byte;
// Zero flag
m_zf = m_a == 0;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xa0: /* AND B */ bitwise_and(m_b); break;
case 0xa1: /* AND C */ bitwise_and(m_c); break;
case 0xa2: /* AND D */ bitwise_and(m_d); break;
case 0xa3: /* AND E */ bitwise_and(m_e); break;
case 0xa4: /* AND H */ bitwise_and(m_h); break;
case 0xa5: /* AND L */ bitwise_and(m_l); break;
case 0xa6: /* AND (HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
// Bitwise AND between the byte pointed to by HL and A
bitwise_and(read(hl()));
break;
}
case 0xa7: /* AND A */ bitwise_and(m_a); break;
case 0xe6: /* AND i8 */ {
m_wait_cycles += 4; // + 4 = 8 total
// Bitwise AND between the value in i8 and A
bitwise_and(pcRead());
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::cp()
{
auto compare = [this](uint32_t register_) -> void {
// CP A,r8, flags: Z 1 H C
m_wait_cycles += 4;
// Subtract the value in r8 from A and set flags accordingly,
// but don't store the result
// Set flags
// Zero flag
m_zf = ((m_a - register_) & 0xff) == 0;
m_nf = 1;
m_hf = isCarrySubtraction(0xf, m_a, register_);
m_cf = isCarrySubtraction(0xff, m_a, register_);
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xb8: /* CP A,B */ compare(m_b); break;
case 0xb9: /* CP A,C */ compare(m_c); break;
case 0xba: /* CP A,D */ compare(m_d); break;
case 0xbb: /* CP A,E */ compare(m_e); break;
case 0xbc: /* CP A,H */ compare(m_h); break;
case 0xbd: /* CP A,L */ compare(m_l); break;
case 0xbe: /* CP A,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
// Subtract the byte pointed to by HL from A and set flags accordingly,
// but don't store the result
compare(read(hl()));
break;
}
case 0xbf: /* CP A,A */ compare(m_a); break;
case 0xfe: /* CP A,i8 */ {
m_wait_cycles += 4; // + 4 = 8 total
// Subtract the value i8 from A and set flags accordingly,
// but don't store the result
compare(pcRead());
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::daa()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x27: { // DAA, flags: Z - 0 C
m_wait_cycles += 4;
// Decimal Adjust Accumulator to get a correct Binary Coded Decimal
// (BCD) representation after an arithmetic instruction
// BCD is a way of representing decimal quantities using each nibble (4
// bits) of a byte (a byte, since it is 8 bits has two nibbles) to store
// a decimal digit.
// Example: 64 split on each number gives a 6 and a 4, so 0110 0100 as a BCD
// Step 1: Check upper nibble of the BCD stored in A.
// If it is greater than decimal 9 or the carry flag is set
// (meaning that the upper nibble value is > 15),
// add decimal 6 to the upper nibble to make it wrap around and set carry flag to 1
// Step 2: Check lower nibble of the BCD stored in A.
// If it is greater than decimal 9 or half carry flag is set
// (meaning that the lower nibble value is > 15),
// add decimal 6 to the lower nibble to make it wrap around
if (!m_nf) {
if (m_cf || m_a > 0x99) {
m_a += 0x60;
// Carry flag
m_cf = 1;
}
if (m_hf || (m_a & 0xf) > 0x9) {
m_a += 0x6;
}
}
else {
if (m_cf) {
m_a -= 0x60;
}
if (m_hf) {
m_a -= 0x6;
}
}
m_a = m_a & 0xff;
// Set flags
m_zf = (m_a == 0);
m_hf = 0;
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::dec8()
{
auto decrement = [this](uint32_t& register_) -> void {
// DEC r8, flags: Z 1 H -
m_wait_cycles += 4;
// Set flags
m_nf = 1;
m_hf = isCarrySubtraction(0xf, register_, 1);
// Decrement value in register r8 by 1
register_ = (register_ - 1) & 0xff;
// Zero flag
m_zf = (register_ == 0);
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0x05: /* DEC B */ decrement(m_b); break;
case 0x0d: /* DEC C */ decrement(m_c); break;
case 0x15: /* DEC D */ decrement(m_d); break;
case 0x1d: /* DEC E */ decrement(m_e); break;
case 0x25: /* DEC H */ decrement(m_h); break;
case 0x2d: /* DEC L */ decrement(m_l); break;
case 0x35: /* DEC (HL) */ {
m_wait_cycles += 8; // + 4 = 12 total
// Decrement the byte pointed to by HL by 1
uint32_t data = read(hl());
decrement(data);
write(hl(), data);
break;
}
case 0x3d: /* DEC A */ decrement(m_a); break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::inc8()
{
auto increment = [this](uint32_t& register_) -> void {
// INC r8, flags: Z 0 H -
m_wait_cycles += 4;
// Set flags
m_nf = 0;
m_hf = isCarry(0xf, register_, 1);
// Increment value in register r8 by 1
register_ = (register_ + 1) & 0xff;
// Zero flag
m_zf = register_ == 0;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0x04: /* INC B */ increment(m_b); break;
case 0x0c: /* INC C */ increment(m_c); break;
case 0x14: /* INC D */ increment(m_d); break;
case 0x1c: /* INC E */ increment(m_e); break;
case 0x24: /* INC H */ increment(m_h); break;
case 0x2c: /* INC L */ increment(m_l); break;
case 0x34: /* INC (HL) */ {
m_wait_cycles += 8; // + 4 = 12 total
// Increment the byte pointed to by HL by 1
uint32_t data = read(hl());
increment(data);
write(hl(), data);
break;
}
case 0x3c: /* INC A */ increment(m_a); break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::or8()
{
auto bitwise_or = [this](uint32_t register_) {
// OR r8, flags: Z 0 0 0
m_wait_cycles += 4;
// Set flags
m_nf = m_hf = m_cf = 0;
// Store into A the bitwise OR of the value in r8 and A
m_a = m_a | register_;
// Zero flag
m_zf = m_a == 0;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xb0: /* OR A,B */ bitwise_or(m_b); break;
case 0xb1: /* OR A,C */ bitwise_or(m_c); break;
case 0xb2: /* OR A,D */ bitwise_or(m_d); break;
case 0xb3: /* OR A,E */ bitwise_or(m_e); break;
case 0xb4: /* OR A,H */ bitwise_or(m_h); break;
case 0xb5: /* OR A,L */ bitwise_or(m_l); break;
case 0xb6: /* OR A,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
// Store into A the bitwise OR of the byte pointed to by HL and A
bitwise_or(read(hl()));
break;
}
case 0xb7: /* OR A,A */ bitwise_or(m_a); break;
case 0xf6: /* OR A,i8 */ {
m_wait_cycles += 4; // + 4 = 8 total
// Store into A the bitwise OR of i8 and A
bitwise_or(pcRead());
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::sbc8()
{
auto subtract_carry = [this](uint32_t register_) -> void {
// SBC A,r8, flags: Z 1 H C
m_wait_cycles += 4;
uint32_t old_carry = m_cf != 0;
// Set flags
m_nf = 1;
m_hf = isCarrySubtraction(0xf, m_a, register_, old_carry);
m_cf = isCarrySubtraction(0xff, m_a, register_, old_carry);
// Subtract the value in r8 and the carry flag from A
m_a = (m_a - register_ - old_carry) & 0xff;
// Zero flag
m_zf = (m_a == 0);
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0x98: /* SBC A,B */ subtract_carry(m_b); break;
case 0x99: /* SBC A,C */ subtract_carry(m_c); break;
case 0x9a: /* SBC A,D */ subtract_carry(m_d); break;
case 0x9b: /* SBC A,E */ subtract_carry(m_e); break;
case 0x9c: /* SBC A,H */ subtract_carry(m_h); break;
case 0x9d: /* SBC A,L */ subtract_carry(m_l); break;
case 0x9e: /* SBC A,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
// Subtract the byte pointed to by HL and the carry flag from A
subtract_carry(read(hl()));
break;
}
case 0x9f: /* SBC A,A */ subtract_carry(m_a); break;
case 0xde: /* SBC A,i8 */ {
m_wait_cycles += 4; // + 4 = 8 total
// Subtract the value i8 and the carry flag from A
subtract_carry(pcRead());
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::sub8()
{
auto subtract = [this](uint32_t register_) -> void {
// SUB A,r8, flags: Z 1 H C
m_wait_cycles += 4;
// Set flags
m_nf = 1;
m_hf = isCarrySubtraction(0xf, m_a, register_);
m_cf = isCarrySubtraction(0xff, m_a, register_);
// Subtract the value in r8 from A
m_a = (m_a - register_) & 0xff;
// Zero flag
m_zf = m_a == 0;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0x90: /* SUB A,B */ subtract(m_b); break;
case 0x91: /* SUB A,C */ subtract(m_c); break;
case 0x92: /* SUB A,D */ subtract(m_d); break;
case 0x93: /* SUB A,E */ subtract(m_e); break;
case 0x94: /* SUB A,H */ subtract(m_h); break;
case 0x95: /* SUB A,L */ subtract(m_l); break;
case 0x96: /* SUB A,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
// Subtract the byte pointed to by HL from A
subtract(read(hl()));
break;
}
case 0x97: /* SUB A,A */ subtract(m_a); break;
case 0xd6: /* SUB A,i8 */ {
m_wait_cycles += 4; // + 4 = 8 total
// Subtract the value i8 from A
subtract(pcRead());
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::xor8()
{
auto bitwise_xor = [this](uint32_t register_) {
// XOR r8, flags: Z 0 0 0
m_wait_cycles += 4;
// Set flags
m_nf = m_hf = m_cf = 0;
// Bitwise XOR between the value in r8 and A
m_a = m_a ^ register_;
// Zero flag
m_zf = m_a == 0;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xa8: /* XOR A,B */ bitwise_xor(m_b); break;
case 0xa9: /* XOR A,C */ bitwise_xor(m_c); break;
case 0xaa: /* XOR A,D */ bitwise_xor(m_d); break;
case 0xab: /* XOR A,E */ bitwise_xor(m_e); break;
case 0xac: /* XOR A,H */ bitwise_xor(m_h); break;
case 0xad: /* XOR A,L */ bitwise_xor(m_l); break;
case 0xae: /* XOR A,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
// Bitwise XOR between the byte pointed to by HL and A
bitwise_xor(read(hl()));
break;
}
case 0xaf: /* XOR A,A */ bitwise_xor(m_a); break;
case 0xee: /* XOR A,i8 */ {
m_wait_cycles += 4; // + 4 = 8 total
// Bitwise XOR between the value in i8 and A
bitwise_xor(pcRead());
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::lda8()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x2a: { // LD A,(HL+) == LD A,(HLI) == LDI A,(HL)
m_wait_cycles += 8;
// Load value into register A from the byte pointed by HL
uint32_t address = hl();
m_a = read(address);
// Increment HL
address = (address + 1) & 0xffff;
m_l = address & 0xff;
m_h = address >> 8;
break;
}
case 0x3a: { // LD A,(HL-) == LD A,(HLD) == LDD A,(HL)
m_wait_cycles += 8;
// Load value into register A from the byte pointed by HL
uint32_t address = hl();
m_a = read(address);
// Decrement HL
address = (address - 1) & 0xffff;
m_l = address & 0xff;
m_h = address >> 8;
break;
}
case 0xfa: // LD A,a16
m_wait_cycles += 16;
// Load value into register A from the byte pointed to by register r16
m_a = read(pcRead16());
break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::addr16()
{
auto add = [this](uint32_t register_) -> void {
// ADD HL,r16, flags: - 0 H C
m_wait_cycles += 8;
// Set flags
m_nf = 0;
m_hf = isCarry(0xfff, hl(), register_);
m_cf = isCarry(0xffff, hl(), register_);
// Add the value in r16 to HL
uint32_t data = (hl() + register_) & 0xffff;
m_l = data & 0xff;
m_h = data >> 8;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0x09: /* ADD HL,BC */ add(bc()); break;
case 0x19: /* ADD HL,DE */ add(de()); break;
case 0x29: /* ADD HL,HL */ add(hl()); break;
case 0x39: /* ADD HL,SP */ add(sp()); break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::adds8()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0xe8: { // ADD SP,s8, flags: 0 0 H C
m_wait_cycles += 16;
uint32_t signed_data = (pcRead() ^ 0x80) - 0x80;
// Set flags
m_zf = 0;
m_nf = 0;
m_hf = isCarry(0xf, m_sp, signed_data);
m_cf = isCarry(0xff, m_sp, signed_data);
// Add the signed value s8 to SP
m_sp = m_sp + signed_data;
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::dec16()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x0b: /* DEC BC */ setBC(bc() - 1); break;
case 0x1b: /* DEC DE */ setDE(de() - 1); break;
case 0x2b: /* DEC HL */ setHL(hl() - 1); break;
case 0x3b: /* DEC SP */ m_sp = (m_sp - 1) & 0xffff; break;
default:
VERIFY_NOT_REACHED();
}
m_wait_cycles += 8;
}
void CPU::inc16()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x03: /* INC BC */ setBC(bc() + 1); break;
case 0x13: /* INC DE */ setDE(de() + 1); break;
case 0x23: /* INC HL */ setHL(hl() + 1); break;
case 0x33: /* INC SP */ m_sp = (m_sp + 1) & 0xffff; break;
default:
VERIFY_NOT_REACHED();
}
m_wait_cycles += 8;
}
// -------------------------------------
void CPU::ldi8()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x06: /* LD B,i8 */ m_b = pcRead(); break;
case 0x0e: /* LD C,i8 */ m_c = pcRead(); break;
case 0x16: /* LD D,i8 */ m_d = pcRead(); break;
case 0x1e: /* LD E,i8 */ m_e = pcRead(); break;
case 0x26: /* LD H,i8 */ m_h = pcRead(); break;
case 0x2e: /* LD L,i8 */ m_l = pcRead(); break;
case 0x36: // LD (HL),i8
m_wait_cycles += 4;
write(hl(), pcRead());
break;
case 0x3e: /* LD A,i8 */ m_a = pcRead(); break;
default:
VERIFY_NOT_REACHED();
}
m_wait_cycles += 8;
}
void CPU::ldr8()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x02: /* LD (BC),A */ {
m_wait_cycles += 4; // + 4 = 8 total
write(bc(), m_a);
break;
}
case 0x0a: /* LD A,(BC) */ {
m_wait_cycles += 4; // + 4 = 8 total
m_a = read(bc());
break;
}
case 0x12: /* LD (DE),A */ {
m_wait_cycles += 4; // + 4 = 8 total
write(de(), m_a);
break;
}
case 0x1a: /* LD A,(DE) */ {
m_wait_cycles += 4; // + 4 = 8 total
m_a = read(de());
break;
}
case 0x22: /* LD (HL+),A == LD (HLI),A == LDI (HL),A */ {
m_wait_cycles += 4; // + 4 = 8 total
// Put A into memory address in HL
uint32_t address = hl();
write(address, m_a);
// Increment HL
address = (address + 1) & 0xffff;
m_l = address & 0xff;
m_h = address >> 8;
break;
}
case 0x32: /* LD (HL-),A == LD (HLD),A == LDD (HL),A */ {
m_wait_cycles += 4; // + 4 = 8 total
// Put A into memory address in HL
uint32_t address = hl();
write(address, m_a);
// Decrement HL
address = (address - 1) & 0xffff;
m_l = address & 0xff;
m_h = address >> 8;
break;
}
case 0x40: /* LD B,B m_b = m_b; */ break;
case 0x41: /* LD B,C */ m_b = m_c; break;
case 0x42: /* LD B,D */ m_b = m_d; break;
case 0x43: /* LD B,E */ m_b = m_e; break;
case 0x44: /* LD B,H */ m_b = m_h; break;
case 0x45: /* LD B,L */ m_b = m_l; break;
case 0x46: /* LD B,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
m_b = read(hl());
break;
}
case 0x47: /* LD B,A */ m_b = m_a; break;
case 0x48: /* LD C,B */ m_c = m_b; break;
case 0x49: /* LD C,C m_c = m_c; */ break;
case 0x4a: /* LD C,D */ m_c = m_d; break;
case 0x4b: /* LD C,E */ m_c = m_e; break;
case 0x4c: /* LD C,H */ m_c = m_h; break;
case 0x4d: /* LD C,L */ m_c = m_l; break;
case 0x4e: /* LD C,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
m_c = read(hl());
break;
}
case 0x4f: /* LD C,A */ m_c = m_a; break;
case 0x50: /* LD D,B */ m_d = m_b; break;
case 0x51: /* LD D,C */ m_d = m_c; break;
case 0x52: /* LD D,D m_d = m_d; */ break;
case 0x53: /* LD D,E */ m_d = m_e; break;
case 0x54: /* LD D,H */ m_d = m_h; break;
case 0x55: /* LD D,L */ m_d = m_l; break;
case 0x56: /* LD D,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
m_d = read(hl());
break;
}
case 0x57: /* LD D,A */ m_d = m_a; break;
case 0x58: /* LD E,B */ m_e = m_b; break;
case 0x59: /* LD E,C */ m_e = m_c; break;
case 0x5a: /* LD E,D */ m_e = m_d; break;
case 0x5b: /* LD E,E m_e = m_e; */ break;
case 0x5c: /* LD E,H */ m_e = m_h; break;
case 0x5d: /* LD E,L */ m_e = m_l; break;
case 0x5e: /* LD E,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
m_e = read(hl());
break;
}
case 0x5f: /* LD E,A */ m_e = m_a; break;
case 0x60: /* LD H,B */ m_h = m_b; break;
case 0x61: /* LD H,C */ m_h = m_c; break;
case 0x62: /* LD H,D */ m_h = m_d; break;
case 0x63: /* LD H,E */ m_h = m_e; break;
case 0x64: /* LD H,H m_h = m_h; */ break;
case 0x65: /* LD H,L */ m_h = m_l; break;
case 0x66: /* LD H,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
m_h = read(hl());
break;
}
case 0x67: /* LD H,A */ m_h = m_a; break;
case 0x68: /* LD L,B */ m_l = m_b; break;
case 0x69: /* LD L,C */ m_l = m_c; break;
case 0x6a: /* LD L,D */ m_l = m_d; break;
case 0x6b: /* LD L,E */ m_l = m_e; break;
case 0x6c: /* LD L,H */ m_l = m_h; break;
case 0x6d: /* LD L,L m_l = m_l; */ break;
case 0x6e: /* LD L,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
m_l = read(hl());
break;
}
case 0x6f: /* LD L,A */ m_l = m_a; break;
case 0x70: /* LD (HL),B */ {
m_wait_cycles += 4; // + 4 = 8 total
write(hl(), m_b);
break;
}
case 0x71: /* LD (HL),C */ {
m_wait_cycles += 4; // + 4 = 8 total
write(hl(), m_c);
break;
}
case 0x72: /* LD (HL),D */ {
m_wait_cycles += 4; // + 4 = 8 total
write(hl(), m_d);
break;
}
case 0x73: /* LD (HL),E */ {
m_wait_cycles += 4; // + 4 = 8 total
write(hl(), m_e);
break;
}
case 0x74: /* LD (HL),H */ {
m_wait_cycles += 4; // + 4 = 8 total
write(hl(), m_h);
break;
}
case 0x75: /* LD (HL),L */ {
m_wait_cycles += 4; // + 4 = 8 total
write(hl(), m_l);
break;
}
case 0x77: /* LD (HL),A */ {
m_wait_cycles += 4; // + 4 = 8 total
write(hl(), m_a);
break;
}
case 0x78: /* LD A,B */ m_a = m_b; break;
case 0x79: /* LD A,B */ m_a = m_c; break;
case 0x7a: /* LD A,D */ m_a = m_d; break;
case 0x7b: /* LD A,E */ m_a = m_e; break;
case 0x7c: /* LD A,H */ m_a = m_h; break;
case 0x7d: /* LD A,L */ m_a = m_l; break;
case 0x7e: /* LD A,(HL) */ {
m_wait_cycles += 4; // + 4 = 8 total
m_a = read(hl());
break;
}
case 0x7f: /* LD A,A m_a = m_a; */ break;
case 0xea: /* LD a16,A */ {
m_wait_cycles += 12; // + 4 = 16 total
// Store value in register A into the byte at address a16
write(pcRead16(), m_a);
break;
}
default:
VERIFY_NOT_REACHED();
}
m_wait_cycles += 4;
}
// Rotate accumulator
void CPU::ra()
{
// Make sure we only look at the bottom 8 bits
m_a = m_a & 0xff;
uint8_t opcode = pcRead();
switch (opcode) {
case 0x07: // RLCA
// Rotates A to the left
// ┌──────────────┐
// │ ┌─────────┐ │
// C <─┴─│7 <── 0│<─┘
// └─────────┘
// A
// Copy bit 7 into carry flag
m_cf = (m_a & 0x80) == 0x80;
// Rotate register A left
m_a = ((m_a >> 7) | (m_a << 1)) & 0xff;
break;
case 0x0f: // RRCA
// Rotates A to the right
// ┌──────────────┐
// │ ┌─────────┐ │
// └─>│7 ──> 0│─┴─> C
// └─────────┘
// A
// Copy bit 0 into carry flag
m_cf = (m_a & 0x1) == 0x1;
// Rotate register A right
m_a = ((m_a >> 1) | (m_a << 7)) & 0xff;
break;
case 0x17: { // RLA
// Rotate register A left through carry
// ┌────────────────────┐
// │ ┌─────────┐ │
// └─ C <──│7 <── 0│<─┘
// └─────────┘
// A
// Copy bit 7 into carry flag
uint32_t old_carry = m_cf != 0;
m_cf = (m_a & 0x80) == 0x80;
// Rotate register A left through carry
m_a = (old_carry | (m_a << 1)) & 0xff;
break;
}
case 0x1f: { // RRA
// Rotate register A right through carry
// ┌────────────────────┐
// │ ┌─────────┐ │
// └─>│7 ──> 0│──> C ─┘
// └─────────┘
// A
// Copy bit 0 into carry flag
uint32_t old_carry = m_cf != 0;
m_cf = (m_a & 0x1) == 0x1;
// Rotate register A right through carry
m_a = ((m_a >> 1) | (old_carry << 7)) & 0xff;
break;
}
default:
VERIFY_NOT_REACHED();
}
// RLCA/RRCA/RLA/RRA, Flags: 0 0 0 C
m_wait_cycles += 4;
// Set flags
m_zf = 0;
m_nf = 0;
m_hf = 0;
}
void CPU::ldff8()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0xe0: // LD (0xff00 + s8),A == LDH (io8),A
m_wait_cycles += 12;
// Put value in A into address (0xff00 + next byte in memory)
ffWrite(pcRead(), m_a);
break;
case 0xe2: // LD (0xff00 + C),A == LDH (C),A
m_wait_cycles += 8;
// Store value in register A into the byte at address 0xff00 + C
ffWrite(m_c, m_a);
break;
case 0xf0: // LD A,(0xff00 + s8) == LDH A,(io8)
m_wait_cycles += 12;
// Put value at address (0xff00 + next byte in memory) into A
m_a = ffRead(pcRead());
break;
case 0xf2: // LD A,(0xff00 + C) == LDH A,(C)
m_wait_cycles += 8;
// Load value into register A from the byte at address 0xff00 + C
m_a = ffRead(m_c);
break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::ldi16()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x01: /* LD BC,i16 */
m_c = pcRead();
m_b = pcRead();
break;
case 0x11: /* LD DE,i16 */
m_e = pcRead();
m_d = pcRead();
break;
case 0x21: /* LD HL,i16 */
m_l = pcRead();
m_h = pcRead();
break;
case 0x31: /* LD SP,i16 */
m_sp = pcRead16();
break;
default:
VERIFY_NOT_REACHED();
}
m_wait_cycles += 12;
}
void CPU::ldr16()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x08: { // LD a16,SP
m_wait_cycles += 20;
// Put value of SP into address given by next 2 bytes in memory
uint32_t address = pcRead16();
write(address, m_sp & 0xff); // lsb(SP)
write((address + 1) & 0xffff, m_sp >> 8); // msb(SP)
break;
}
case 0xf8: { // LD HL,SP + s8 == LDHL SP,s8, flags: 0 0 H C
m_wait_cycles += 12;
// Put SP + next (signed) byte in memory into HL
uint32_t signed_data = (pcRead() ^ 0x80) - 0x80;
uint32_t sum = m_sp + signed_data;
m_l = sum & 0xff;
m_h = sum >> 8;
// Set flags
m_zf = 0;
m_nf = 0;
m_hf = isCarry(0xf, m_sp, signed_data);
m_cf = isCarry(0xff, m_sp, signed_data);
break;
}
case 0xf9: { // LD SP,HL
m_wait_cycles += 8;
// Load register HL into register SP
m_sp = hl();
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::pop()
{
auto pop_stack = [this](uint32_t& register_high, uint32_t& register_low) -> void {
// POP r16
m_wait_cycles += 12;
// Pop register r16 from stack
register_low = read(m_sp); // lsb(r16)
m_sp = (m_sp + 1) & 0xffff;
register_high = read(m_sp); // msb(r16)
m_sp = (m_sp + 1) & 0xffff;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xc1: /* POP BC */ pop_stack(m_b, m_c); break;
case 0xd1: /* POP DE */ pop_stack(m_d, m_e); break;
case 0xe1: /* POP HL */ pop_stack(m_h, m_l); break;
case 0xf1: /* POP AF, flags: Z N H C */ {
uint32_t data;
pop_stack(m_a, data);
// Set flags
m_zf = (data & 0x80) == 0x80; // bit 7 of the popped low byte
m_nf = (data & 0x40) == 0x40; // bit 6 ,,
m_hf = (data & 0x20) == 0x20; // bit 5 ,,
m_cf = (data & 0x10) == 0x10; // bit 4 ,,
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::push()
{
auto push_into_stack = [this](uint32_t register_) -> void {
// PUSH r16
m_wait_cycles += 16;
// Push register r16 into stack
m_sp = (m_sp - 1) & 0xffff;
write(m_sp, register_ >> 8); // msb(r16)
m_sp = (m_sp - 1) & 0xffff;
write(m_sp, register_ & 0xff); // lsb(r16)
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xc5: /* PUSH BC */ push_into_stack(bc()); break;
case 0xd5: /* PUSH DE */ push_into_stack(de()); break;
case 0xe5: /* PUSH HL */ push_into_stack(hl()); break;
case 0xf5: /* PUSH AF */ push_into_stack(af()); break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::call()
{
auto function_call = [this](bool should_call) -> void {
// CALL cc,i16
// Note: the operand is read even when the condition is false
uint32_t data = pcRead16();
if (!should_call) {
m_wait_cycles += 12;
return;
}
m_wait_cycles += 24;
// Push address of the instruction after the CALL on the stack,
// such that RET can pop it later
m_sp = (m_sp - 1) & 0xffff;
write(m_sp, m_pc >> 8); // msb(PC)
m_sp = (m_sp - 1) & 0xffff;
write(m_sp, m_pc & 0xff); // lsb(PC)
// Jump to operand address
m_pc = data;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xc4: /* CALL NZ,i16 */ function_call(!m_zf); break;
case 0xcc: /* CALL Z,i16 */ function_call(m_zf); break;
case 0xcd: /* CALL i16 */ function_call(true); break;
case 0xd4: /* CALL NC,i16 */ function_call(!m_cf); break;
case 0xdc: /* CALL C,i16 */ function_call(m_cf); break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::jp16()
{
auto jump = [this](bool should_jump) -> void {
// JP cc,i16
// Note: the operand is read even when the condition is false
uint32_t data = pcRead16();
if (!should_jump) {
m_wait_cycles += 12;
return;
}
m_wait_cycles += 16;
// Jump to address i16 if condition is met; effectively, store i16 into PC
m_pc = data;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xc2: /* JP NZ,a16 */ jump(!m_zf); break;
case 0xc3: /* JP a16 */ jump(true); break;
case 0xca: /* JP Z,a16 */ jump(m_zf); break;
case 0xd2: /* JP NC,a16 */ jump(!m_cf); break;
case 0xda: /* JP C,a16 */ jump(m_cf); break;
case 0xe9: // JP HL
m_wait_cycles += 4;
// Jump to address in HL; effectively, load PC with value in register HL
m_pc = hl();
break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::jrs8()
{
auto jump_relative = [this](bool should_jump) -> void {
// JR cc,s8
// Note: the operand is read even when the condition is false
uint32_t signed_data = (pcRead() ^ 0x80) - 0x80;
if (!should_jump) {
m_wait_cycles += 8;
return;
}
m_wait_cycles += 12;
// Relative jump by adding s8 to the address of the instruction following the JR
m_pc = (m_pc + signed_data) & 0xffff;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0x18: /* JR s8 */ jump_relative(true); break;
case 0x20: /* JR NZ,s8 */ jump_relative(!m_zf); break;
case 0x28: /* JR Z,s8 */ jump_relative(m_zf); break;
case 0x30: /* JR NC,s8 */ jump_relative(!m_cf); break;
case 0x38: /* JR C,s8 */ jump_relative(m_cf); break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::ret()
{
auto function_return = [this](bool should_call) -> void {
// RET cc,i16
if (!should_call) {
m_wait_cycles += 8;
return;
}
m_wait_cycles += 20;
// Return from subroutine if condition cc is met,
// this is basically a POP PC (if such an instruction existed)
m_pc = read(m_sp); // lsb(SP)
m_sp = (m_sp + 1) & 0xffff;
m_pc = m_pc | (read(m_sp) << 8); // msb(SP)
m_sp = (m_sp + 1) & 0xffff;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xc0: /* RET NZ,i16 */ function_return(!m_zf); break;
case 0xc8: /* RET Z,i16 */ function_return(m_zf); break;
case 0xc9: /* RET i16 */ function_return(true); break;
case 0xd0: /* RET NC,i16 */ function_return(!m_cf); break;
case 0xd8: /* RET C,i16 */ function_return(m_cf); break;
case 0xd9: /* RETI */ {
// Return from subroutine
function_return(true);
m_ime = true;
break;
}
default:
VERIFY_NOT_REACHED();
}
}
void CPU::rst()
{
auto function_call = [this](uint32_t fixed_address) -> void {
// RST vec
m_wait_cycles += 16;
// Push present address onto stack
m_sp = (m_sp - 1) & 0xffff;
write(m_sp, m_pc >> 8);
m_sp = (m_sp - 1) & 0xffff;
write(m_sp, m_pc & 0xff);
// Jump to this address
m_pc = fixed_address;
};
uint8_t opcode = pcRead();
switch (opcode) {
case 0xc7: /* RST 0x00 */ function_call(0x00); break;
case 0xcf: /* RST 0x08 */ function_call(0x08); break;
case 0xd7: /* RST 0x10 */ function_call(0x10); break;
case 0xdf: /* RST 0x18 */ function_call(0x18); break;
case 0xe7: /* RST 0x20 */ function_call(0x20); break;
case 0xef: /* RST 0x28 */ function_call(0x28); break;
case 0xf7: /* RST 0x30 */ function_call(0x30); break;
case 0xff: /* RST 0x38 */ function_call(0x38); break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::misc()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x2f: // CPL, flags: - 1 1 -
m_wait_cycles += 4;
// Complement register A (flip all bits)
m_a = (~m_a) & 0xff;
// Set flags
m_nf = m_hf = 1;
break;
case 0x37: // SCF, flags: - 0 0 1
m_wait_cycles += 4;
// Set flags
m_nf = m_hf = 0;
m_cf = 1;
break;
case 0x3f: // CCF, flags: - 0 0 C
m_wait_cycles += 4;
// Set flags
m_nf = m_hf = 0;
// Invert carry
m_cf = (m_cf) ? 0 : 1;
break;
case 0xf3: // DI
m_wait_cycles += 4;
// Disable Interrupts by clearing the IME flag
m_ime = 0;
break;
case 0xfb: // EI
m_wait_cycles += 4;
// Enable Interrupts by setting the IME flag.
// The flag is only set after the instruction following EI
m_should_enable_ime = true;
break;
default:
VERIFY_NOT_REACHED();
}
}
void CPU::nop()
{
uint8_t opcode = pcRead();
switch (opcode) {
case 0x0: /* NOP */ m_wait_cycles += 4; break;
default:
VERIFY_NOT_REACHED();
}
}
// -----------------------------------------
void CPU::setBC(uint32_t value)
{
m_c = value & 0xff;
m_b = (value & 0xff00) >> 8;
}
void CPU::setDE(uint32_t value)
{
m_e = value & 0xff;
m_d = (value & 0xff00) >> 8;
}
void CPU::setHL(uint32_t value)
{
m_l = value & 0xff;
m_h = (value & 0xff00) >> 8;
}
// -----------------------------------------
uint32_t CPU::pcRead()
{
uint32_t data = Emu::the().readMemory(m_pc) & 0xff;
m_pc = (m_pc + 1) & 0xffff;
return data;
}
void CPU::write(uint32_t address, uint32_t value)
{
Emu::the().writeMemory(address, value & 0xff);
}
uint32_t CPU::read(uint32_t address)
{
// FIXME: Figure out where HL gets set to above 0xffff
return Emu::the().readMemory(address & 0xffff) & 0xff;
}
void CPU::ffWrite(uint32_t address, uint32_t value)
{
Emu::the().writeMemory(address | (0xff << 8), value & 0xff);
}
uint32_t CPU::ffRead(uint32_t address)
{
return Emu::the().readMemory(address | (0xff << 8)) & 0xff;
}
bool CPU::isCarry(uint32_t limit_bit, uint32_t first, uint32_t second, uint32_t third)
{
return (first & limit_bit) + (second & limit_bit) + (third & limit_bit) > limit_bit;
}
bool CPU::isCarrySubtraction(uint32_t limit_bit, uint32_t lhs, uint32_t rhs, uint32_t rhs_extra)
{
return (lhs & limit_bit) < (rhs & limit_bit) + (rhs_extra & limit_bit);
}
// -----------------------------------------
void Formatter<CPU>::parse(Parser& parser)
{
parser.parseSpecifier(specifier, Parser::ParameterType::UserDefined);
}
void Formatter<CPU>::format(Builder& builder, const CPU& value) const
{
if (!specifier.alternativeForm) {
builder.putString(
::format("| AF {:#06x} | BC {:#06x} | DE {:#06x} | HL {:#06x} | PC {:#06x} | SP {:#06x} |",
value.af(), value.bc(), value.de(), value.hl(), value.pc(), value.sp()));
return;
}
Formatter<uint32_t> formatter { .specifier = specifier };
builder.putString("AF: ");
formatter.format(builder, value.af());
builder.putString("\nBC: ");
formatter.format(builder, value.bc());
builder.putString("\nDE: ");
formatter.format(builder, value.de());
builder.putString("\nHL: ");
formatter.format(builder, value.hl());
builder.putString("\nPC: ");
formatter.format(builder, value.pc());
builder.putString("\nSP: ");
formatter.format(builder, value.sp());
}