/* * Copyright (C) 2023 Riyi * * SPDX-License-Identifier: MIT */ #include // std::chrono::sytem_clock #include // int64_t #include // std::advance #include // std::static_pointer_cast #include #include "ruc/file.h" #include "ruc/format/format.h" #include "ast.h" #include "environment.h" #include "error.h" #include "forward.h" #include "printer.h" #include "types.h" #include "util.h" // At the top-level you cant invoke any function, but you can create variables. // Using a struct's constructor you can work around this limitation. // Also the line number in the file is used to make the struct names unique. #define FUNCTION_STRUCT_NAME(unique) __functionStruct##unique #define ADD_FUNCTION_IMPL(unique, symbol, lambda) \ struct FUNCTION_STRUCT_NAME(unique) { \ FUNCTION_STRUCT_NAME(unique) \ (const std::string& __symbol, FunctionType __lambda) \ { \ s_functions.emplace(__symbol, __lambda); \ } \ }; \ static struct FUNCTION_STRUCT_NAME(unique) \ FUNCTION_STRUCT_NAME(unique)( \ symbol, \ [](std::list nodes) -> ValuePtr lambda); #define ADD_FUNCTION(symbol, lambda) ADD_FUNCTION_IMPL(__LINE__, symbol, lambda); namespace blaze { static std::unordered_map s_functions; ADD_FUNCTION( "+", { int64_t result = 0; for (auto node : nodes) { VALUE_CAST(number, Number, node); result += number->number(); } return makePtr(result); }); ADD_FUNCTION( "-", { if (nodes.size() == 0) { return makePtr(0); } // Start with the first number VALUE_CAST(number, Number, nodes.front()); int64_t result = number->number(); // Skip the first node for (auto it = std::next(nodes.begin()); it != nodes.end(); ++it) { VALUE_CAST(number, Number, (*it)); result -= number->number(); } return makePtr(result); }); ADD_FUNCTION( "*", { int64_t result = 1; for (auto node : nodes) { VALUE_CAST(number, Number, node); result *= number->number(); } return makePtr(result); }); ADD_FUNCTION( "/", { CHECK_ARG_COUNT_AT_LEAST("/", nodes.size(), 1); // Start with the first number VALUE_CAST(number, Number, nodes.front()); double result = number->number(); // Skip the first node for (auto it = std::next(nodes.begin()); it != nodes.end(); ++it) { VALUE_CAST(number, Number, (*it)); result /= number->number(); } return makePtr((int64_t)result); }); // // ----------------------------------------- #define NUMBER_COMPARE(operator) \ { \ bool result = true; \ \ CHECK_ARG_COUNT_AT_LEAST(#operator, nodes.size(), 2); \ \ /* Start with the first number */ \ VALUE_CAST(number_node, Number, nodes.front()); \ int64_t number = number_node->number(); \ \ /* Skip the first node */ \ for (auto it = std::next(nodes.begin()); it != nodes.end(); ++it) { \ VALUE_CAST(current_number_node, Number, (*it)); \ int64_t current_number = current_number_node->number(); \ if (!(number operator current_number)) { \ result = false; \ break; \ } \ number = current_number; \ } \ \ return makePtr((result) ? Constant::True : Constant::False); \ } ADD_FUNCTION("<", NUMBER_COMPARE(<)); ADD_FUNCTION("<=", NUMBER_COMPARE(<=)); ADD_FUNCTION(">", NUMBER_COMPARE(>)); ADD_FUNCTION(">=", NUMBER_COMPARE(>=)); // ----------------------------------------- ADD_FUNCTION( "list", { return makePtr(nodes); }); ADD_FUNCTION( "empty?", { bool result = true; for (auto node : nodes) { VALUE_CAST(collection, Collection, node); if (!collection->empty()) { result = false; break; } } return makePtr((result) ? Constant::True : Constant::False); }); // FIXME: (count {1}) infinite loop ADD_FUNCTION( "count", { CHECK_ARG_COUNT_IS("count", nodes.size(), 1); auto first_argument = nodes.front(); size_t result = 0; if (is(first_argument.get()) && std::static_pointer_cast(nodes.front())->state() == Constant::Nil) { // result = 0 } else if (is(first_argument.get())) { result = std::static_pointer_cast(first_argument)->size(); } else { Error::the().add(format("wrong argument type: Collection, '{}'", first_argument)); return nullptr; } // FIXME: Add numeric_limits check for implicit cast: size_t > int64_t return makePtr((int64_t)result); }); // ----------------------------------------- #define PRINTER_STRING(print_readably, concatenation) \ { \ std::string result; \ \ Printer printer; \ for (auto it = nodes.begin(); it != nodes.end(); ++it) { \ result += format("{}", printer.printNoErrorCheck(*it, print_readably)); \ \ if (!isLast(it, nodes)) { \ result += concatenation; \ } \ } \ \ return makePtr(result); \ } ADD_FUNCTION("str", PRINTER_STRING(false, "")); ADD_FUNCTION("pr-str", PRINTER_STRING(true, " ")); #define PRINTER_PRINT(print_readably) \ { \ Printer printer; \ for (auto it = nodes.begin(); it != nodes.end(); ++it) { \ print("{}", printer.printNoErrorCheck(*it, print_readably)); \ \ if (!isLast(it, nodes)) { \ print(" "); \ } \ } \ print("\n"); \ \ return makePtr(); \ } ADD_FUNCTION("prn", PRINTER_PRINT(true)); ADD_FUNCTION("println", PRINTER_PRINT(false)); // ----------------------------------------- ADD_FUNCTION( "=", { CHECK_ARG_COUNT_AT_LEAST("=", nodes.size(), 2); std::function equal = [&equal](ValuePtr lhs, ValuePtr rhs) -> bool { if ((is(lhs.get()) || is(lhs.get())) && (is(rhs.get()) || is(rhs.get()))) { const auto& lhs_nodes = std::static_pointer_cast(lhs)->nodes(); const auto& rhs_nodes = std::static_pointer_cast(rhs)->nodes(); if (lhs_nodes.size() != rhs_nodes.size()) { return false; } auto lhs_it = lhs_nodes.cbegin(); auto rhs_it = rhs_nodes.cbegin(); for (; lhs_it != lhs_nodes.end(); ++lhs_it, ++rhs_it) { if (!equal(*lhs_it, *rhs_it)) { return false; } } return true; } if (is(lhs.get()) && is(rhs.get())) { const auto& lhs_nodes = std::static_pointer_cast(lhs)->elements(); const auto& rhs_nodes = std::static_pointer_cast(rhs)->elements(); if (lhs_nodes.size() != rhs_nodes.size()) { return false; } for (const auto& [key, value] : lhs_nodes) { auto it = rhs_nodes.find(key); if (it == rhs_nodes.cend() || !equal(value, it->second)) { return false; } } return true; } if (is(lhs.get()) && is(rhs.get()) && std::static_pointer_cast(lhs)->data() == std::static_pointer_cast(rhs)->data()) { return true; } if (is(lhs.get()) && is(rhs.get()) && std::static_pointer_cast(lhs)->keyword() == std::static_pointer_cast(rhs)->keyword()) { return true; } if (is(lhs.get()) && is(rhs.get()) && std::static_pointer_cast(lhs)->number() == std::static_pointer_cast(rhs)->number()) { return true; } if (is(lhs.get()) && is(rhs.get()) && std::static_pointer_cast(lhs)->state() == std::static_pointer_cast(rhs)->state()) { return true; } if (is(lhs.get()) && is(rhs.get()) && std::static_pointer_cast(lhs)->symbol() == std::static_pointer_cast(rhs)->symbol()) { return true; } return false; }; bool result = true; auto it = nodes.begin(); auto it_next = std::next(nodes.begin()); for (; it_next != nodes.end(); ++it, ++it_next) { if (!equal(*it, *it_next)) { result = false; break; } } return makePtr((result) ? Constant::True : Constant::False); }); ADD_FUNCTION( "read-string", { CHECK_ARG_COUNT_IS("read-string", nodes.size(), 1); VALUE_CAST(node, String, nodes.front()); std::string input = node->data(); return read(input); }); ADD_FUNCTION( "slurp", { CHECK_ARG_COUNT_IS("slurp", nodes.size(), 1); VALUE_CAST(node, String, nodes.front()); std::string path = node->data(); auto file = ruc::File(path); return makePtr(file.data()); }); ADD_FUNCTION( "eval", { CHECK_ARG_COUNT_IS("eval", nodes.size(), 1); return eval(nodes.front(), nullptr); }); // (atom 1) ADD_FUNCTION( "atom", { CHECK_ARG_COUNT_IS("atom", nodes.size(), 1); return makePtr(nodes.front()); }); // (deref myatom) ADD_FUNCTION( "deref", { CHECK_ARG_COUNT_IS("deref", nodes.size(), 1); VALUE_CAST(atom, Atom, nodes.front()); return atom->deref(); }); // (reset! myatom 2) ADD_FUNCTION( "reset!", { CHECK_ARG_COUNT_IS("reset!", nodes.size(), 2); VALUE_CAST(atom, Atom, nodes.front()); auto value = *std::next(nodes.begin()); atom->reset(value); return value; }); // (swap! myatom (fn* [x y] (+ 1 x y)) 2) -> (deref (def! myatom (atom ((fn* [x y] (+ 1 x y)) (deref myatom) 2)))) ADD_FUNCTION( "swap!", { CHECK_ARG_COUNT_AT_LEAST("swap!", nodes.size(), 2); VALUE_CAST(atom, Atom, nodes.front()); VALUE_CAST(callable, Callable, (*std::next(nodes.begin()))); // Remove atom and function from the argument list, add atom value nodes.pop_front(); nodes.pop_front(); nodes.push_front(atom->deref()); ValuePtr value = nullptr; if (is(callable.get())) { auto function = std::static_pointer_cast(callable)->function(); value = function(nodes); } else { auto lambda = std::static_pointer_cast(callable); value = eval(lambda->body(), Environment::create(lambda, nodes)); } return atom->reset(value); }); // (cons 1 (list 2 3)) -> (1 2 3) ADD_FUNCTION( "cons", { CHECK_ARG_COUNT_IS("cons", nodes.size(), 2); VALUE_CAST(collection, Collection, (*std::next(nodes.begin()))); auto result = makePtr(collection->nodes()); result->addFront(nodes.front()); return result; }); // (concat (list 1) (list 2 3)) -> (1 2 3) ADD_FUNCTION( "concat", { std::list result_nodes; for (auto node : nodes) { VALUE_CAST(collection, Collection, node); auto argument_nodes = collection->nodes(); result_nodes.splice(result_nodes.end(), argument_nodes); } return makePtr(result_nodes); }); // (vec (list 1 2 3)) -> [1 2 3] ADD_FUNCTION( "vec", { CHECK_ARG_COUNT_IS("vec", nodes.size(), 1); if (is(nodes.front().get())) { return nodes.front(); } VALUE_CAST(collection, Collection, nodes.front()); return makePtr(collection->nodes()); }); // (nth (list 1 2 3) 0) -> 1 ADD_FUNCTION( "nth", { CHECK_ARG_COUNT_IS("nth", nodes.size(), 2); VALUE_CAST(collection, Collection, nodes.front()); VALUE_CAST(number_node, Number, (*std::next(nodes.begin()))); const auto& collection_nodes = collection->nodes(); auto index = (size_t)number_node->number(); if (number_node->number() < 0 || index >= collection_nodes.size()) { Error::the().add("index is out of range"); return nullptr; } auto result = collection_nodes.cbegin(); for (size_t i = 0; i < index; ++i) { result++; } return *result; }); // (first (list 1 2 3)) -> 1 ADD_FUNCTION( "first", { CHECK_ARG_COUNT_IS("first", nodes.size(), 1); if (is(nodes.front().get()) && std::static_pointer_cast(nodes.front())->state() == Constant::Nil) { return makePtr(); } VALUE_CAST(collection, Collection, nodes.front()); return (collection->empty()) ? makePtr() : collection->front(); }); // (rest (list 1 2 3)) -> (2 3) ADD_FUNCTION( "rest", { CHECK_ARG_COUNT_IS("rest", nodes.size(), 1); if (is(nodes.front().get()) && std::static_pointer_cast(nodes.front())->state() == Constant::Nil) { return makePtr(); } VALUE_CAST(collection, Collection, nodes.front()); return makePtr(collection->rest()); }); // (apply + 1 2 (list 3 4)) -> (+ 1 2 3 4) ADD_FUNCTION( "apply", { CHECK_ARG_COUNT_AT_LEAST("apply", nodes.size(), 2); auto callable = nodes.front(); IS_VALUE(Callable, callable); VALUE_CAST(collection, Collection, nodes.back()); // Remove function and list from the arguments nodes.pop_front(); nodes.pop_back(); // Append list nodes to the argument leftovers auto collection_nodes = collection->nodes(); nodes.splice(nodes.end(), collection_nodes); ValuePtr value = nullptr; if (is(callable.get())) { auto function = std::static_pointer_cast(callable)->function(); value = function(nodes); } else { auto lambda = std::static_pointer_cast(callable); value = eval(lambda->body(), Environment::create(lambda, nodes)); } return value; }); // (map (fn* (x) (* x 2)) (list 1 2 3)) ADD_FUNCTION( "map", { CHECK_ARG_COUNT_IS("map", nodes.size(), 2); VALUE_CAST(callable, Callable, nodes.front()); VALUE_CAST(collection, Collection, nodes.back()); const auto& collection_nodes = collection->nodes(); auto result = makePtr(); if (is(callable.get())) { auto function = std::static_pointer_cast(callable)->function(); for (const auto& node : collection_nodes) { result->add(function({ node })); } } else { auto lambda = std::static_pointer_cast(callable); for (const auto& node : collection_nodes) { result->add(eval(lambda->body(), Environment::create(lambda, { node }))); } } return result; }); // (throw x) ADD_FUNCTION( "throw", { CHECK_ARG_COUNT_IS("throw", nodes.size(), 1); Error::the().add(nodes.front()); return nullptr; }) // ----------------------------------------- #define IS_CONSTANT(name, constant) \ { \ CHECK_ARG_COUNT_IS(name, nodes.size(), 1); \ \ return makePtr( \ is(nodes.front().get()) \ && std::static_pointer_cast(nodes.front())->state() == constant); \ } // (nil? nil) ADD_FUNCTION("nil?", IS_CONSTANT("nil?", Constant::Nil)); ADD_FUNCTION("true?", IS_CONSTANT("true?", Constant::True)); ADD_FUNCTION("false?", IS_CONSTANT("false?", Constant::False)); // ----------------------------------------- #define IS_TYPE(type) \ { \ bool result = true; \ \ if (nodes.size() == 0) { \ result = false; \ } \ \ for (auto node : nodes) { \ if (!is(node.get())) { \ result = false; \ break; \ } \ } \ \ return makePtr(result); \ } // (symbol? 'foo) ADD_FUNCTION("atom?", IS_TYPE(Atom)); ADD_FUNCTION("keyword?", IS_TYPE(Keyword)); ADD_FUNCTION("list?", IS_TYPE(List)); ADD_FUNCTION("map?", IS_TYPE(HashMap)); ADD_FUNCTION("number?", IS_TYPE(Number)); ADD_FUNCTION("sequential?", IS_TYPE(Collection)); ADD_FUNCTION("string?", IS_TYPE(String)); ADD_FUNCTION("symbol?", IS_TYPE(Symbol)); ADD_FUNCTION("vector?", IS_TYPE(Vector)); ADD_FUNCTION( "fn?", { bool result = true; if (nodes.size() == 0) { result = false; } for (auto node : nodes) { if (!is(node.get())) { result = false; break; } if (is(node.get())) { result = false; break; } } return makePtr(result); }); ADD_FUNCTION( "macro?", { bool result = true; if (nodes.size() == 0) { result = false; } for (auto node : nodes) { if (!is(node.get())) { result = false; break; } } return makePtr(result); }); // ----------------------------------------- #define STRING_TO_TYPE(name, type) \ { \ CHECK_ARG_COUNT_IS(name, nodes.size(), 1); \ \ if (is(nodes.front().get())) { \ return nodes.front(); \ } \ \ VALUE_CAST(stringValue, String, nodes.front()); \ \ return makePtr(stringValue->data()); \ } // (symbol "foo") ADD_FUNCTION("symbol", STRING_TO_TYPE("symbol", Symbol)); ADD_FUNCTION("keyword", STRING_TO_TYPE("keyword", Keyword)); // ----------------------------------------- ADD_FUNCTION( "vector", { auto result = makePtr(); for (auto node : nodes) { result->add(node); } return result; }); ADD_FUNCTION( "hash-map", { CHECK_ARG_COUNT_EVEN("hash-map", nodes.size()); auto result = makePtr(); for (auto it = nodes.begin(); it != nodes.end(); std::advance(it, 2)) { result->add(*it, *(std::next(it))); } return result; }); // (assoc {:a 1 :b 2} :a 3 :c 1) ADD_FUNCTION( "assoc", { CHECK_ARG_COUNT_AT_LEAST("assoc", nodes.size(), 1); VALUE_CAST(hash_map, HashMap, nodes.front()); nodes.pop_front(); CHECK_ARG_COUNT_EVEN("assoc", nodes.size()); auto result = makePtr(hash_map->elements()); for (auto it = nodes.begin(); it != nodes.end(); std::advance(it, 2)) { result->add(*it, *(std::next(it))); } return result; }); ADD_FUNCTION( "dissoc", { CHECK_ARG_COUNT_AT_LEAST("dissoc", nodes.size(), 1); VALUE_CAST(hash_map, HashMap, nodes.front()); nodes.pop_front(); auto result = makePtr(hash_map->elements()); for (auto node : nodes) { result->remove(node); } return result; }); // (get {:kw "value"} :kw) ADD_FUNCTION( "get", { CHECK_ARG_COUNT_AT_LEAST("get", nodes.size(), 1); if (is(nodes.front().get()) && std::static_pointer_cast(nodes.front())->state() == Constant::Nil) { return makePtr(); } VALUE_CAST(hash_map, HashMap, nodes.front()); nodes.pop_front(); if (nodes.size() == 0) { return makePtr(); } auto result = hash_map->get(nodes.front()); return (result) ? result : makePtr(); }); ADD_FUNCTION( "contains?", { CHECK_ARG_COUNT_AT_LEAST("contains?", nodes.size(), 1); VALUE_CAST(hash_map, HashMap, nodes.front()); nodes.pop_front(); if (nodes.size() == 0) { return makePtr(false); } return makePtr(hash_map->exists(nodes.front())); }); ADD_FUNCTION( "keys", { CHECK_ARG_COUNT_AT_LEAST("keys", nodes.size(), 1); VALUE_CAST(hash_map, HashMap, nodes.front()); auto result = makePtr(); auto elements = hash_map->elements(); for (auto pair : elements) { if (pair.first.front() == 0x7f) { // 127 result->add(makePtr(pair.first.substr(1))); } else { result->add(makePtr(pair.first)); } } return result; }); ADD_FUNCTION( "vals", { CHECK_ARG_COUNT_AT_LEAST("vals", nodes.size(), 1); VALUE_CAST(hash_map, HashMap, nodes.front()); auto result = makePtr(); auto elements = hash_map->elements(); for (auto pair : elements) { result->add(pair.second); } return result; }); ADD_FUNCTION( "readline", { CHECK_ARG_COUNT_IS("readline", nodes.size(), 1); VALUE_CAST(prompt, String, nodes.front()); return readline(prompt->data()); }); ADD_FUNCTION("time-ms", { CHECK_ARG_COUNT_IS("time-ms", nodes.size(), 0); int64_t elapsed = std::chrono::duration_cast( std::chrono::system_clock::now().time_since_epoch()) .count(); return makePtr(elapsed); }); // (meta [1 2 3]) ADD_FUNCTION( "meta", { CHECK_ARG_COUNT_IS("meta", nodes.size(), 1); auto front = nodes.front(); Value* front_raw_ptr = nodes.front().get(); if (!is(front_raw_ptr) && // List / Vector !is(front_raw_ptr) && // HashMap !is(front_raw_ptr)) { // Function / Lambda Error::the().add(format("wrong argument type: Collection, HashMap or Callable, {}", front)); return nullptr; } return front->meta(); }); // (with-meta [1 2 3] "some metadata") ADD_FUNCTION( "with-meta", { CHECK_ARG_COUNT_IS("with-meta", nodes.size(), 2); auto front = nodes.front(); Value* front_raw_ptr = nodes.front().get(); if (!is(front_raw_ptr) && // List / Vector !is(front_raw_ptr) && // HashMap !is(front_raw_ptr)) { // Function / Lambda Error::the().add(format("wrong argument type: Collection, HashMap or Callable, {}", front)); return nullptr; } return front->withMeta(nodes.back()); }); // (conj '(1 2 3) 4 5 6) -> (6 5 4 1 2 3) // (conj [1 2 3] 4 5 6) -> [1 2 3 4 5 6] ADD_FUNCTION( "conj", { CHECK_ARG_COUNT_AT_LEAST("conj", nodes.size(), 1); VALUE_CAST(collection, Collection, nodes.front()); nodes.pop_front(); auto collection_nodes = collection->nodes(); if (is(collection.get())) { nodes.reverse(); nodes.splice(nodes.end(), collection_nodes); auto result = makePtr(nodes); return result; } nodes.splice(nodes.begin(), collection_nodes); auto result = makePtr(nodes); return result; }); // (seq '(1 2 3)) -> (1 2 3) // (seq [1 2 3]) -> (1 2 3) // (seq "foo") -> ("f" "o" "o") ADD_FUNCTION( "seq", { CHECK_ARG_COUNT_IS("seq", nodes.size(), 1); auto front = nodes.front(); Value* front_raw_ptr = front.get(); if (is(front_raw_ptr) && std::static_pointer_cast(front)->state() == Constant::Nil) { return makePtr(); } if (is(front_raw_ptr)) { auto collection = std::static_pointer_cast(front); if (collection->empty()) { return makePtr(); } if (is(front_raw_ptr)) { return front; } return makePtr(collection->nodes()); } if (is(front_raw_ptr)) { auto string = std::static_pointer_cast(front); if (string->empty()) { return makePtr(); } auto result = makePtr(); const auto& data = string->data(); for (const auto& character : data) { result->add(makePtr(character)); } return result; } Error::the().add(format("wrong argument type: Collection or String, {}", front)); return nullptr; }); // ----------------------------------------- void installFunctions(EnvironmentPtr env) { for (const auto& [name, lambda] : s_functions) { env->set(name, makePtr(name, lambda)); } } } // namespace blaze